
Trace fossils are invaluable for palaeoenvironmental 
reconstructions (e.g. Pemberton 1992, Pemberton et al. 
2001, Buatois & Mángano 2011, Knaust & Bromley 
2012) and for detecting evolutionary trends (e.g. Mángano 
& Buatois 2016a, b). Increased interest in ichnology 
resulted in the description and erection of numerous 
ichnotaxa that allowed for their recurrent recognition 
and communication. However, after the compilation 
of the second edition of the Trace Fossils volume in 
the Treatise of Invertebrate Paleontology (Häntzschel 
1975), the number of valid invertebrate ichnogenera has 
multiplied (Knaust 2012, Buatois et al. 2017). Many 
ichnotaxa are based on weak grounds, either due to in­
appropriate characteristics chosen as ichnotaxobases, poor 
preservation, single specimens, or simply overlooked 
synonymy. Accordingly, comprehensive ichnotaxonomic 
reciews are necessary for the efficient and robust applica­
tion of ichnologic evidence.

This contribution provides a  taxonomic assessment 
of the ichnospecies Curvolithus gregarius Fritsch, 1908 
from the Upper Ordovician of Czechia (see Mikuláš 
1992, for previous evaluations of this ichnofauna), based 
on a reinvestigation of the type material and newly col­
lected specimens. In a general review of the ichnogenus 

Curvolithus, Buatois et al. (1998) excluded the ichno­
species C. gregarius from that ichnogenus due to the 
morphological discrepancy with the diagnostic features of 
Curvolithus. These authors also noted similarities of the 
type material of C. gregarius with other scratched trace  
fossils supposedly produced by arthropods, such as Tambia  
and Monomorphichnus. However, no formal ichnotaxo- 
nomic decision was made at that time, and the ichno- 
taxonomic status of this ichnospecies was left indeterminate.

Here, we formally include C. gregarius in Tambia 
Müller, 1969 as T. gregaria comb. nov. In addition, we 
briefly revise other ichnotaxa described by Fritsch (1908) 
that are related to T. gregaria. This study is part of an 
overall examination of historical trace-fossil collections 
and ichnotaxonomic re-evaluation of the collection of 
Fritsch (1908) at the National Museum in Prague, Czechia.

Geologic setting

The uppermost Ordovician (Hirnantian) Kosov Formation 
(e.g. Brenchley & Štorch 1989) is exposed in the Prague 
Basin and in the Rožmitál Trench (e.g. Mikuláš 1995; 
Fig. 1A, B). Both regional geological units belong to the 
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Bohemian Massif, which covers areas of Czechia, eastern 
Germany, southern Poland, and northern Austria. More 
than half of the Bohemian Massif consists of crystalline 
rocks are older than Carboniferous and therefore were 
deformed during the Variscan Orogeny (e.g. Havlíček 
1998). The Prague Basin represents a major part of the 
so-called Barrandian area, well known for its rich fossil 
content. During the 19th century, the richness of middle 
Cambrian and Lower Ordovician–Middle Devonian fossils 
allowed the French palaeontologist Joachim Barrande to 
write the yet largest scientific volume written by a single 
person (Barrande 1852–1883, Barrande et al. 1852–1911).

The Variscan Orogeny was a phase of mountain build­
ing and accretion of terranes that resulted from the closure 
of the Rheic Ocean, when the two palaeocontinents 
Gondwana (in the south) and Laurussia (in the north) 
collided. The good preservation of Palaeozoic fossils in 

the Bohemian Massif can be explained by the existence 
of the microcontinent Perunica, which represented the 
Precambrian core of the Bohemian Massif. As a result, 
the Lower Palaeozoic rocks could rest in the overburden 
of the Neoproterozoic volcanic-sedimentary rocks and 
were not metamorphosed during the Gondwana-Laurussia 
collision (Havlíček et al. 1994). The existence of Perunica, 
however, is not generally accepted (Fatka & Mergl 2009). 
During the Variscan Orogeny, almost all continental mass 
was united in the supercontinent Pangaea (Scotese 2021). 
Since the end of the Palaeozoic, the Variscan mountain 
belt became eroded and partly covered with younger 
sediments.

The Kosov Formation mostly consists of alternating 
green-greyish sandstone and micaceous shale (e.g. Bren­
chley & Štorch 1989; Fig. 1C). It contains two layers of 
coarse-grained wacke at its base, interpreted as glacial-

Figure 1. Location map and stratigraphy (modified after Mikuláš 1992). • A – Czech Republic and neighbouring countries with location of inset map 
in B. • B – map displaying outcrops of Ordovician age (stippled) in the Prague Basin. • C – generalized section of the Kosov Formation. Lithology 
and bathymetry after Štorch (1986, 1990). Legend:1 – Graptolitic shale; 2 – claystone and siltstone; 3 – coarse- to very coarse-grained sandstone and 
conglomerate; 4 – very fine- to medium-grained sandstone; 5 – coarse-grained wacke; 6 – clayey limestone; 7 – limestone concretions and lenses;  
Fm. – Formation; ŽEL. – Želkovice; KR. – Králův Dvůr; t – transgression; r – regression.
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marine deposits (diamictites; Brenchley & Štorch 1989, 
Štorch 1990). The remaining part of the formation bears 
structures typical of storm deposition, such as hum­
mocky-cross stratification, observed at Řeporyje, Hlásná 
Třebaň and other localities (Brenchley & Štorch 1989, 
Buatois et al. 1998). Although its body-fossil record 
is quite poor (except for its lowermost and uppermost 
layers, e.g. Marek & Havlíček 1967, Havlíček 1982 and 
Mergl 2011), the Kosov Formation hosts a rich ichno­
fauna, including Asteriacites, Bifungites, Cruziana, Cur
volithus, Dimorphichnus, Diplichnites, Fustiglyphus, 
Monofungites, Monomorphichnus, Planolites and Rhizo
corallium (e.g. Mikuláš 1992).

The trace fossil described by Fritsch as Curvolithus 
gregarius is common at the Hlásná Třebaň locality 
(Mikuláš 2019). The name of the site (then Vorder Třebaň, 
meaning Front Třebaň) appeared in the “Problematica 
Silurica” by A. Fritsch in 1908. Since then, the site has 
been sporadically mentioned in explanations to geologic 
maps. Furthermore, it is described in more detail in the 

sedimentological study by Bouček & Přibyl (1958), by 
Brenchley & Štorch (1989) from the Hlásná Třebaň II 
section, in the work of Mikuláš (1992), and a recent field 
guide (Mikuláš 2019). Further individual specimens 
assigned to C. gregarius were recorded from Řeporyje 
(Fig. 1) and Levín localities (Mikuláš 1992). Poorly pre­
served specimens with similarities to C. gregarius were 
also found in the Letná Formation (Sandbian) of the 
Prague Basin.

The Hlásná Třebaň site is on the southern slope of 
a prominent mountain ridge with poor vegetation and 
thus containing numerous and relatively large outcrops. 
The whole area suitable for the study of the Kosov 
Formation is ca. 30 × 300 m. This slope is partly terraced, 
probably due to its historical use for the cultivation of 
grapevine (local name Vinice, meaning ‘vineyard’). The 
Kosov Formation in this section comprises a coarsening-
upward succession, which in turn can be subdivided into  
a series of small-scale coarsening-upward intervals. The  
stratal stacking pattern is interpreted as a series of dis- 

Figure 2. Lectotype of Tambia gregaria (Fritsch, 1908) comb. nov. (hyporelief preservation) from the Upper Ordovician Kosov Formation of Hlásná 
Třebaň, southwest of Prague, Czechia. The sample contains three partly overlapping clusters of burrows. The white staining was originally done to 
highlight the burrows from their background. L 7536; A – original label; B – overview of the slab showing three clusters of burrows, each consisting of 
a group of individual bow-shaped burrows that are crosscut by an elongate horizontal burrow (white arrows). The herein defined lectotype is indicated 
(black arrow), while the remaining specimens of that sample constitute paralectotypes; C – close-up of the main cluster illustrated in B; D – close up of 
the lectotype. Note the strong subparallel scratches and local criss-crossing in the paratype on the right. Scale bars = 1 cm.
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crete parasequences forming a single progradation para­
sequence set. A transgressive deposit is present at the top 
of the parasequence set as part of the so-called “lower 
flysch” of alternating storm sandstone beds and shale in 
the sense of Brenchley & Štorch (1989), Štorch (1990), 
Brenchley et al. (1991) and Štorch (2006).

Two main sedimentary facies are observed: (1) regular- 
ly interbedded hummocky cross-stratified and wave-ripple  
cross-laminated, very fine-grained sandstone and shale;  
and (2) amalgamated hummocky cross-stratified,very 
fine-grained sandstone. Some sandstone layers bear prom- 
inent, sharp tool marks on their bases (Fig. 1C). Soft-
sediment deformation structures, such as ball-and-pillow 
structures, are present locally. While the amalgamated 
sandstone beds are generally poor in trace fossils, the 
discrete hummocky cross-stratified sandstone layers 
contain relatively rich trace-fossil assemblages preserved 
in hyporelief and epirelief (Rusophycus isp., Cruziana 
problematica, Asteriacites isp., Helminthoidichnites isp., 
Bifungites isp.; Mikuláš 2019).

The succession represents deposition in a wave-dom- 
inated, shallow-marine setting. The interbedded sand­
stone and shale record the alternation of storm events 
and fair-weather suspension fallout in offshore to off­
shore-transition environments, between the storm-wave 
base and the fair-weather wave base. These most distal 
deposits of the Kosov Formation host the diverse trace-
fossil assemblage as previously outlined, including 
Tambia gregaria as analyzed in this contribution. The 
amalgamated sandstone beds, mostly devoid of biogenic 
sedimentary structures, represent repeated storm erosion 
and deposition events in a  lower to middle shoreface 
above the fair-weather wave base.

Systematic ichnology

Institutional abbreviations. – GST – Geological Survey of 
Thuringia, Jena/Weimar, Germany; L – National Museum 
Prague, Czech Republic; MB.W – Palaeontological 
Collection of the Museum of Natural History, Berlin, 
Germany; P – Phyletic Museum Jena, Germany.

Ichnogenus Tambia Müller, 1969

Type ichnospecies. – Tambia spiralis Müller, 1969.

Diagnosis. – Original :  Screwed-in semireliefs or flat 
structures with a rounded outline. The surface is covered 
by fan-shaped or parallel to the outer edge running striae 
[translated from German].

Revised :  Shallow vertical, inclined to horizontal 
burrows with a semi-circular, circular, crescentic, or spiral 
shape, covered with sets of parallel striae.

Remarks. – The ichnogenus Tambia was established for 
heavily scratched burrows with a circular or spiral-like 
outline from the lower Permian (Cisuralian) Tambach 
Formation of Germany. This ichnotaxon is preserved at 
the base of sheet sandstone of alluvial origin (Eberth et al. 
2000) and displays high morphological variability (Müller 
1956, Martens 1975). It occurs in close association with 
Scoyenia gracilis White, 1929 and another ichnotaxon of 
scratch imprints, Striatichnium bromackerense Martens, 
1982, as well as various tetrapod trackways. Tambia spi
ralis was originally interpreted as the surface trace of an 
arthropod or annelid (Müller 1954), although the sharp 
scratches indicate the action of robust appendages, thus 
suggesting production by arthropods.

Ichnospecies Tambia gregaria (Fritsch, 1908)  
comb. nov.
Figures 2, 4–6

LSID. urn:lsid:zoobank.org:pub:55F4AD24-0B52-4207-
9300-DCD252468353

	 *1908  Curvolithus gregarious; Fritsch, pp. 13, 14, fig. 1.

Types. – L 7536 (Fig. 2A–D). One sample from Hlásná 
Třebaň with several clusters of burrows was figured 
in the original publication by Fritsch (1908), of which 
“… a group of furrows” was referred to as lectotype by 
Mikuláš (1992, p. 31, pl. 15, fig. 5). Since this cluster 
consists of several partially superimposed burrows, 
a  single burrow is herein defined as the lectotype of 
T. gregaria in accordance with Article 74 of the ICZN 

Figure 3. Sketch, based on the lectotype sample (see Fig. 2B), 
to illustrate the applied terminology and description in the text. The 
diagnosis of Tambia gregaria comb. nov. includes individual burrows, 
but not burrow clusters or the associated elongate burrow.
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(1999; Fig. 2B, black arrow), and all remaining similarly 
scratched burrows constitute paralectotypes.

Type horizon and locality. – Kosov Formation (Hirnantian, 
Upper Ordovician); Hlásná Třebaň, southwest of Prague, 
Czechia.

Material. – Types and nine additional samples containing 
13 individual burrows and one cluster of three burrows 
were studied (Tab. 1).

Diagnosis. – Original: Fossils in relief, which affect the 
short and long Bilobites shape. The largest of them have 

Figure 4. Lower sandstone bedding plane with several specimens of Tambia gregaria (Fritsch, 1908) comb. nov. (hyporelief preservation) from the 
Upper Ordovician Kosov Formation of Hlásná Třebaň, southwest of Prague, Czechia. L 53292. A – overview with several T. gregaria and associated 
elongate horizontal burrows. B – semi-circular, slightly spiral T. gregaria with longitudinal scratches and cross-cutting elongate burrow (arrow).  
C – two specimens with horizontal burrows and associated bioturbation. D – interpretative and simplified line drawing of C showing T. gregaria 
(green), elongate burrows (grey) and shallower traces (red). The arrow indicates continuation of burrow in F. E – two specimens with cross-cutting 
elongate tunnels, some of which show meniscate backfill. F – interpretative and simplified line drawing of E showing T. gregaria (green) and elongate 
burrows (shades of grey). The arrow indicates continuation of burrow from D. Scale bars = 5 cm (A) and 1 cm (B–D).
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a length of 30 cm and a width up to 15 cm. They are curved 
and have seven protruding and smooth, longitudinal ribs. 
From the group stands a Fucoid and a short extension, ear-
shaped [translated from French].

Revised: Horizontal to inclined, crescent-shaped, pas- 
sively filled burrows with sets of longitudinal, sub-parallel 
or rarely crossing striae. Burrows occur isolated or form­
ing irregular clusters of partially overlapping specimens.

Description. – Fritsch’s original slab including the 
lectotype specimen contains three clusters with a  total 
of 14 individual, arcuate burrows displaying variable 
convexity at the base (i.e. positive hyporelief, Fig. 2A–D; 
for terminology, see Fig. 3). The clusters are irregular in 
morphology, partly overlapping, and contain two to ten 
burrows that tend to display similar general orientation 
(i.e. the convexity of crescentic structures in the same 
direction). Individual burrows are 2.7–6.0 cm in length, 
up to 1.9 cm in width, and oriented obliquely to the 
bedding (ca. 10–30°). Burrows are deeply ornamented 
with a dense system of strong scratches that mainly run in 
longitudinal direction, rarely diverging (i.e. bifurcating) 
or cross-cutting each other. Thick striae, 0.2–0.3 cm 
wide, constitute the dominant ornamentation, but a few 
specimens exhibit thinner sub-parallel striae typically 
occurring in the shallower part of the burrow (i.e. adjacent 
to the surface of the sandstone bed). The lectotype is 
2.7 cm long, 1.9 cm wide, and ca. 20° inclined to the 
bedding (Fig. 2B–D). It contains up to nine longitudinal 
scratches separated from each other by ca. 0.1–0.2 cm. 
Additional specimens of T. gregaria in Fritsch’s collected 
slabs consist of burrows with a  bow-shaped to semi-
circular outline also forming irregular clusters (Figs 4–6). 

Some isolated specimens, such as L 52024 (Fig. 5B) and, 
to a  lesser degree, L 59790 (Fig. 6A), show an almost 
circular outline.

Remarks. – Curvolithus Fritsch, 1908 was erected for “… 
curved, short, conical remains, whose surface is decorated 
with many furrows” occurring in the Ordovician of 
Czechia. The diagnosis of Curvolithus was subsequently 
revised to include “straight to curved, horizontal, sub-
horizontal to rarely oblique, ribbonlike or tongue-like, 
flattened...traces with three rounded lobes on upper 
surface”, in alignment with the common understanding of 
this ichnotaxon (Buatois et al. 1998). The type material of 
Fritsch’s two ichnospecies, C. multiplex and C. gregarius, 
differs significantly in morphology (Buatois et al. 1998). 
Curvolithus multiplex was subsequently designated as the 
type ichnospecies of Curvolithus by Häntzschel (1962), 
whereas C. gregarius was removed from Curvolithus 
due to the lack of the diagnostic three-lobe morphology 
(Buatois et al. 1998). Similarities of C. gregarius with 
Monomorphichnus Crimes, 1970 and Tambia Müller, 
1969 were noted by Buatois et al. (1998).

The characteristic morphology and scratches of C. gre- 
garius make this ichnospecies similar to other ichno­
taxa, most notably the oblique U-shaped spreite burrow 
Rhizocorallium jenense Zenker, 1836 and Gyrolithes po
lonicus Fedonkin, 1981 (Fig. 7). In contrast to Rhizocoral-
lium, there is no clear evidence of a causative U-shaped  
burrow and spreite in C. gregarius (see Fürsich 1974 
and Knaust 2013). The diagnostic spiral architecture of 
Gyrolithes polonicus is not evident in C. gregarius (see 
Uchman & Hanken 2013, Laing et al. 2018). Monomorph
ichnus is a problematic ichnogenus comprising a set of 

Table 1. Studied material of Tambia gregaria (Fritsch, 1908) comb. nov.

Inv. No. Locality Original name Reference Figure
Number of 

clusters

Number of 
individual 
burrows

L 7536 Hlásná Třebaň Curvolithus gregarius Fritsch (1908, fig. 1) 2 3 14

L 7768 Hlásná Třebaň Fucoid Fritsch (1908, fig. 7)   1 1

L 7816 Radotín Crossochorda sp. Fritsch (1908, pl. 10, fig. 5)   1 1

L 27726 Řeporyje Crossochorda sp. Fritsch?   1 1

L 59792 Braník Crossochorda sp. Coll. 19th century, not studied by Fritsch   1 1

L 59790 Řeporyje   Coll. 19th century, not studied by Fritsch 6A 1 1

L 52025 Řeporyje   Coll. 19th century, not studied by Fritsch   1 3

L 59791 Řeporyje   Coll. 19th century, not studied by Fritsch   1 1

L 52024 Hlásná Třebaň Rusophycus? isp. Mikuláš (2019, fig. 6) 5B 1 1

L 53292 Hlásná Třebaň Tambia gregaria Mikuláš, coll. in 2020 4, 5A, 8 6 6
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simple scratch imprints (Crimes 1970, but see Seilacher 
1985), whereas C. gregarius is a scratched burrow.

This study proposes transferring C. gregarius to the  
ichnogenus Tambia, as a separate ichnospecies. For a cor­

rect declination of the ichnospecies name concerning its 
new ichnogenus name, the nomen gregarius has been cor­
rected to gregaria. Tambia gregaria differs from T. spiralis  
by having a strong crescentic shape instead of a spiral or 

Figure 5. Specimens of Tambia gregaria (Fritsch, 1908) comb. nov. (hyporelief preservation) from the Upper Ordovician Kosov Formation of Hlásná 
Třebaň, southwest of Prague, Czechia. A – partly broken, oblique specimen exposed together with a shallower elongate burrow (arrow). L 53292 B.  
B – semi-circular specimen crosscut with a short, steeply inclined tunnel (arrow). L 52024. C – bow-shaped, oblique specimen crosscut by two 
undulating burrows (arrows). Field photograph. Scale bars = 1 cm.

A B
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circular outline, and mainly longitudinal subparallel striae 
instead of fan-shaped striae arranged in a spiral fashion 
(Fig. 7A, B). Moreover, T. gregaria tends to build clusters 
of partly overprinting burrows, a feature rather unknown 
from commonly single T. spiralis.

Sandstone slabs with scratched burrows are common 
in Fritsch’s collection of trace fossils from the Kosov 
Formation. Some of these trace fossils described and 
figured by Fritsch (1908) deserve further discussion due 
to their similarities with T. gregaria to explore potential 
synonymies. Two specimens referred to as Crossochorda 
isp. were figured by Fritsch (pl. 12, fig. 13 and pl. 10, fig. 5).  
These consist of burrows with a series of arch-shaped 
scratch imprints. Crossochorda Schimper, 1879 in Schim­
per & Schenk (1879) is a  poorly known ichnogenus 
that Häntzschel (1975) regarded as a junior synonym of 
Crossopodia M‘Coy, 1851. However, this ichnogenus has 
a convoluted history (see discussion in Mángano et al.  
2002) and its use is not recommended. In fact, Crosso
chorda may be a junior synonym of Protovirgularia or 
Cruziana (Mángano et al. 2002). In any case, these two 
specimens of Crossochorda isp. figured by Fritsch (1908) 
do not display the diagnostic features of any of these 
ichnotaxa and are better accommodated in T. gregaria 
based on their overall morphology and typical scratch 
patterns.

Another specimen was figured by Fritsch (pl. 9, fig. 3) 
as Crossopodia costata? However, this specimen shows 
some scratches with a higher curvature than typical for  
T. gregaria. In addition, this burrow is U-shaped and  
contains a  spreite, therefore better assigned to Rhizo
corallium commune.

A  single specimen of the ichnotaxon Digitolithus 
rugatus (Fritsch 1908, fig. 7; see Knaust 2020) contains 
an arched burrow with scratches closely resembling 
some occurrences of T. gregaria. Alectorurus venosus, as 
illustrated by Fritsch (1908, pl. 3, fig. 8), shows a lobate 
structure with scratches, although in this case, affinity 
with T. gregaria is more debatable.

Finally, longitudinally scratched burrows commonly 
occur together with tool marks at the base of sandstone 
beds (L 27728, Fig. 6B; originally labelled as Pattes 
natatoires by Fritsch 1908, pl. 10, fig. 4), for instance in 
some localities of the Kosov Formation (e.g. Levín). They 
resemble incompletely preserved (e.g. partly eroded) 
burrows and are a preservation variant of T. gregaria. 

Tambia gregaria is associated with elongate burrows, 
up to 13 cm long and 0.5–1.6 cm wide, which, in some 
cases, seem to emerge from the concave part of the 
arcuate burrows (Figs 4C, D; 8), crosscut it in others (Fig. 
4E, F), and occur in the area of highest convexity in some 
situations (Fig. 5B, C). These elongate burrows display 
a very irregular morphology with an undulating outline 
or appear as angular and kinked. Terminal expansions are 

Figure 6. Specimens from the Fritsch collection with Tambia gregaria 
(Fritsch, 1908) comb. nov. and associated traces and structures from the 
Upper Ordovician Kosov Formation of Hlásná Třebaň, southwest of 
Prague, Czechia. A – semi-circular specimen with longitudinal scratches 
and a long elongate structure cross-cutting into it (arrowhead), while an 
elongate burrow crosscuts the inner part of Tambia gregaria in a sub-
vertical direction (arrow). L 59790. B – tool marks and longitudinally 
scratched burrows at the base of a sandstone bed together with sub-
vertically penetrating tunnels (arrows). Original from Fritsch (1908,  
pl. 10, fig. 4), labelled as Pattes natatoires. L 27728. Scale bars = 1 cm.
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common. The local presence of rough menisci suggests 
active fill with sediment slightly different from the host 
sediment. In particular, the lectotype of T. gregaria 
is associated with an 8.4 cm long and 0.7–1.6 cm wide 
horizontal burrow with a bulbous outline (Fig. 2B). Weak 
annulation and rough menisci are poorly developed in 
parts of the elongate burrow. Some elongate burrows in 

other slabs are slightly inclined (up to ca. 20°), dipping 
away from T. gregaria (Figs 2B–D, 5A). In specimens 
L 52024 (Fig. 5B) and L 59790, a short, steeply inclined 
burrow crosses the burrow apex. In addition, an elongate, 
shallow, gently tapering, roughly straight burrow, 4.8 cm 
long and 4.0–4.5 cm wide, is associated with the specimen 
of T. gregaria in L 59790 (Fig. 6A).

Figure 7. Scratched burrows of different ichnotaxa with similar morphology as Tambia gregaria comb. nov., preserved in hyporelief. • A, B – Tambia 
spiralis Müller, 1969, at the base of alluvial sandstone on top of mudstone with desiccation cracks. Permian (Rotliegend) Tambach Formation, 
Bromacker near Tambach-Dietharz, Germany. P 555 (A), MB.W 25 (B). • C, D – Rhizocorallium jenense Zenker, 1836 from the Röt Formation of Jena, 
Germany. GST 5035-701-202 (C, coll. K. Mägdefrau) and P 1821 (D). • E, F – Gyrolithes polonicus Fedonkin, 1981 (= Spiroscolex spiralis Torell, 
1870) from the lower Cambrian Mickwitzia Sandstone of Lugnås, southern Sweden. MB.W 1829. Scale bars = 1 cm.
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Discussion

The ichnogenus Tambia was originally interpreted as the 
surface trace of annelids or arthropods (Müller 1954).  
Both groups of organisms can generate scratch imprints in 
cohesive substrate during excavation, but only arthropods 
tend to produce deep, robust striations due to the action of 
articulated appendages. However, conspicuous, subparallel 
striae have also been described as ornamentation in some 
burrows produced by the priapulid Priapulus caudatus 
(see Kesidis et al. 2019). In addition, more localized 
striation has been noted in Treptichnus rectangularis by 
Orłowski & Żylińska (1996). These authors attributed 
the striation to spines, highlighting their presence in the 
proboscis of priapulids. Subsequent work interpreted this 
striation as produced by the scalids that are organized 
forming a  ring in priapulids, based on similarities in 
number (20) and overall characteristics (Kesidis et al. 
2019). However, the mostly parallel, local crisscrossing 
of the striae in T. gregaria militates against a priapulid 
producer. In short, the prominent ornamentation of  
T. gregaria suggests arthropods rather than priapulids or 
annelids as potential trace makers.

Different groups of arthropods may have been able to 
produce T. gregaria. Trilobites were common components 
in lower Palaeozoic shallow-marine settings. In the 
Kosov Formation, trilobites and other body fossils are 
very rare, except in the uppermost layers containing the 
so-called Hirnantia fauna. This scarcity of body fossils 
seems to be related to taphonomic processes instead of 
original absence (Havlíček 1998). Mikuláš (1992) studied 
trace fossils of the Kosov Formation and found several 
ichnotaxa attributable to trilobites or other arthropods, 
including Cruziana, Dimorphichnus, Diplichnites and 
Monomorphichnus. Notably, T. gregaria does not show 
morphologic features typical for trilobite trace fossils. 
Moreover, the dominantly sub-parallel striae along the 
axis of the burrow seem to be incompatible with the 

metachronal movement of multiple-legged trilobites that 
typically produces discrete, multiple striae and criss-
crossing patterns.

Early representatives of the Malacostraca, such as 
some phyllocarids, have been hypothesized to have had 
an infaunal mode of life (Collette & Hagadorn 2010) and 
could be potential producers. Although criss-crossing is 
only locally present, this pattern could be consistent with 
the combined lateral (produced by thoracic appendages) 
and frontal strokes (produced by head appendages) of 
phyllocarid crustaceans.

The robust scratches of T. gregaria suggest excavation 
of a cohesive, firm, muddy substrate by the action of 
strong appendages. Firmground burrows commonly 
remain open for a while after their abandonment and 
burrow maintenance may have been involved to keep the 
structures open. Open burrows are subsequently passively 
filled, for instance during transgressions or storm events 
(e.g. Tedesco & Wanless 1991). T. gregaria is preserved  
at the base of tempestites and is not associated with any 
surface bearing allostratigraphic significance. Accord­
ingly, the formation of a firm surface was most likely due 
to storm erosion related to autogenic processes.

Reconstructing the behavioural significance of these 
scratched burrows is not straightforward. Vigorous use of 
appendages during scratching may serve various purposes, 
including most notably different feeding strategies (e.g. 
microbial grazing, predation) and moulting. Microbial 
grazing is hard to invoke as no evidence of microbial 
mats (e.g. microbially induced sedimentary structures) is 
apparent in the studied surfaces. In addition, the highly 
convex arcuate burrow morphology and penetrative nature 
do not seem to be consistent with microbial grazing.

Predation may be suggested based on a common asso­
ciation with horizontal burrows, in a fashion like Ruso
phycus produced by trilobites hunting for worms, such as 
Planolites, Helminthopsis and Teichichnus (Jensen 1990, 
Pickerill & Blissett 1999, Tarhan et al. 2012). However, 
in the case of the association of T. gregaria with the 
prominent elongate burrows, the latter clearly crosscut  
the former, indicating their subsequent origin (i.e. after the 
formation of T. gregaria). The morphology of these long, 
horizontal burrows and their relation to T. gregaria remain 
enigmatic.

These structures present drastic, sharp kinks and turns 
that are more akin to a  relatively compacted sediment 
(i.e. firm); however, the infill of these structures, changes 
in burrow width, and bulgy boundaries suggest a poorly 
consolidated sediment infill that contrasts remarkably 
with the firm substrate of T. gregaria, suggesting a post-
depositional softground suite. 

Finally, organisms rid themselves of the exuvia dur­
ing moulting by thrashing about, twisting around, or rub- 
bing themselves against the sediment (Vallon et al. 2015).  

Figure 8. Idealized reconstruction of Tambia gregaria and the  
associated elongate burrow, based on specimen L 53292 D (Fig. 4C).
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These processes may result in well-defined scratch im­
prints. However, moulting behaviour is implausible in the 
case of T. gregaria, whose producer seems to record the 
active use of appendages for excavation.

To sum up, the co-occurrence of T. gregaria and the 
elongate horizontal burrows may reflect the reuse of 
some resources in previously produced structures (i.e.  
T. gregaria). Still, a clear genetic link between both traces 
cannot be supported based on available morphologic 
evidence.

Conclusion

Curvolithus gregarius Fritsch, 1908 was erected for 
scratched burrows commonly occurring at the base of 
sandstone beds in the Upper Ordovician Kosov Formation 
of the Prague Basin, Czechia. The current diagnosis of 
the ichnogenus Curvolithus excludes this ichnospecies, 
which is now accommodated in the ichnogenus Tambia 
as the new combination Tambia gregaria (Fritsch, 1908). 
T. gregaria comprises dominantly crescentic, scratched, 
sub-horizontal to inclined burrows with a  tendency to 
form clusters. In addition, elongate cylindrical burrows 
co-occur with T. gregaria, but postdate it, and no direct 
relationship between both traces can be concluded. An 
arthropod producer (rather than a ‘worm’) is inferred, but 
its behaviour remains ambiguous.
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