себлі NSV ТЕАДИЗТЕ АКАДЕЕМІА ТОТМЕТІВЕД ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР

КЕЕМІА GEOLOOGIA ХИМИЯ ГЕОЛОГИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 23. KÕIDE KEEMIA * GEOLOOGIA. 1974, NR. 3

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ХИМИЯ * ГЕОЛОГИЯ. 1974. № 3

УДК 551.7:540.3

В. ПЕТЕРСЕЛЛЬ

О РАСПРЕДЕЛЕНИИ МИКРОЭЛЕМЕНТОВ И ГЕНЕЗИСЕ СУЛЬФИДНОЙ МИНЕРАЛИЗАЦИИ В КРИСТАЛЛИЧЕСКИХ ПОРОДАХ ЯГАЛАСКОЙ ТОЛЩИ

В метаморфизованных и мигматизированных первично-осадочно-вулканогенных породах ягалаской толщи широко распространена сульфидная минерализация (Петерселль, 1974). Она представлена сингенетической вкрапленностью и ее перекристаллизованными и переотложенными в процессах метаморфизма разновидностями первой стадии, а также секущими прожилками второй стадии. Сульфидная минерализация образована пирротином, пиритом, реже халькопиритом, сфалеритом, редко галенитом, молибденитом, марказитом и другими минералами и обычно сопровождается аномальными содержаниями в породе Со, Ni, Cu, Pb, Zn, Mo, F, Au и других элементов.

Фоновые содержания микроэлементов в разновидностях пород ягалаской толщи близки к кларковым (Кивисилла и др., 1974, табл. 1). В них нередко преобладает свойственная для спилит-кератофировой формации ассоциация элементов. В первично-вулканогенных породах толщи выделяются более основные разновидности — биотит-амфиболовые гнейсы — с аномальным содержанием и дисперсией Сг, Со, Ni, Си и других элементов, а также более кислые разновидности — кварцполевошпатовые, биотитовые и частично амфибол-биотитовые гнейсы с аномальным содержанием Си, Мо, Zn и иногда Au,

В более кислых разновидностях пород содержания Ni и Co становятся фоновыми, а их отношение уменьшается. Аномальные содержания микроэлементов в основном приурочены к отдельным пластам или участкам гнейсов, в которых нередко наблюдается сингенетическая вкрапленность сульфидов или ее перекристаллизованные и переотложенные разновидности. Аномальные содержания Ni, Co, Mo и других элементов не всегда сопровождаются вкрапленностью сульфидов. В ряде случаев эти аномалии, в первую очередь Cr, Ni и Co, вызваны прослоями более основных пород, но в некоторых скважинах аномальное содержание Ni, Mo и других элементов нельзя объяснить изменчивостью кислотности пород. Как показали анализы мономинеральных фракций биотитов из пород таких скважин, большая часть рудных элементов сконцентрирована здесь именно в биотитах.

Слои вулканогенных пород, в которых геохимические аномалии Ni, Cu, Zn, Mo, реже Co, Pb и Au сопровождаются явной сингенетической вкрапленностью сульфидов или концентрацией их в биотите, как правило, не отличаются гидротермальными или другими изменениями пород, свидетельствующими о наложенном характере минерализации. Содержание микроэлементов в пирротине и пирите из этих пород приведено в табл. 1, откуда видно, что различия содержаний микроэлементов в

Содержание микроэлементов в мономинеральном пирротине и пирите из пород ягалаской толщи

•	- normananeseo e	i use etc.	TBO				-				19.		-			Элеме	енты, г	/м										
ажин	Минералы	Стадия	личес		Ni			Co	0.1		Cu	0		Pb			Zn			Ag			As			Cr		Ni · Co
Heckb	Rent officeporer	pre-un Carriera	Коана	OT	до	ĩ	OT	до	x	OT	до	x	OT	до	ĩ	ОТ	до	x	ОТ	до	ĩ	ОТ	до	x	от	до	x	
Φ-110	Пирротин из мел- козернистых графитсодер- жащих гнейсов	Сингенетическая вкрапленность I генерации	3	70.	300	160	40	60	49	80	100	86	0,9	2	1,2	60	200	130	0,5	1	0,71	-	30	-	100	200	160	3,3
Φ-110	Пирротин из миг- матизированных графитсодер- жащих гнейсов	Сингенетическая вкрапленность II генерации	6	200	500	350	15	60	40	20	300	72	0,2	20	0,56	100	800	240	0,6	3	1,1	-	-	-	10	400	66	8,8
Φ-102, Φ-113			2	50	500	160	40	50	45	200	400	280	0,1	0,8	0,28	80	100	89	0,5	1	0,71	30	30	30	60	100	78	3,6
Φ-108	Пирротин из био- тит-амфиболо- вых гнейсов	Сингенетическая вкрапленность І и II генераций	2	40	40	40	10	10	10	40	200	89	0,1	0,1	0,1	80	100	89	0,4	0,4	0,4	-	-	-	10	60	24	4,0
Φ-107 Φ-104 Φ-113	и Пирротин из миг- матизированных глиноземистых гиебсор	" Секущие прожил- ки рудной гене- рации	2 1 1	90 	600	230 200 1000	60	80	69 100 30	400	400	400 60 500	0,2	0,7	0,38 1 400	40 	100	64 600 700	0,6 — —	0,9 	0,73 0,9 1	-	30	-	100	300	170 700 10	3,3 2,0 33,3
Φ-113	Пирит из мигма- тизированных глиноземистых гнейсов	."	1	-	-	200	-	-	50	-	-	200	-	-	600	-	-	80	-	-	4				-	-	300	4
Φ-108	Пирит из амфи- бол-биотитовых гнейсов	Секущие прожил- ки и вкраплен- ность рудной	2	20	100	47	30	50	39	200	600	380	90	200	130	100	200	140	1	10	3,2		5000	-	200	200	200	1,2
Φ-112	Пирит из пегма- тоидных грани-	"	1	-	. —	50	-	-	90	-		60	-	-	400	-	-	5000	-	-	40	-	-	200	T	-	100	0,56
Φ-110	Пирит из глино- земистых гней- сов	Секущие прожил- ки «безрудной» генерации	7.	10	300	81	15	40	21	1	6	1,4	1	20	8,1	4	40	~ 3,2	0,5	2	0,78				90	200	110	3,8

Примечание. Анализы выполнены в лаборатории ТПИ на спектрографе ДФС-8 ответственным аналитиком Хельви Хёдреярв.

Таблица 2

Содержание микроэлементов в основных типах пород ягалаской толщи

Contraction of the second		Номера	uect-	Cr		Co		Ni		Cu		Pb		Zn		Мо	
	Породы	скважин	Коли во пр	x	3	x	8 9	x	8	x	8	x	3	x	в	x	8
A	Первично-вулканогенные			4		000	0	2 101	1.200	11.00	1 59-13	04%	ana h	anda	ar les		
	Гнейс кварц-полевошпатовый от мелко- до среднезернистого	Φ-111	79	13	1,31		4		_	13	1,62	19	1,42	51	1,51	3,3	2,55
	Гнейс биотитовый среднезернистый, участками с амфиболом	Φ-104	23	39	1,29	11	1,17	~10	_	12	1,67	8,7	1,30	210	1,32	16	3,34
	Гнейс амфибол-биотитовый среднезер- нистый	Φ-104	29	33	1,16	12	1,09	~11	-	17	1,59	10	1,74	160	1,30	2,0	2,00
	Гнейс биотитовый среднезернистый	Φ-108	22	18	1,39	8,8	1,36	12	1,17	33	2,00	8,7	1,26	86	1,28	~3	-
	Гнейс амфибол-биотитовый среднезер- нистый	Φ-108	30	27	1,33	10	1,30	13	1,23	21	2,00	8,3	1,21	100	1,40	~2	_
	Гнейс биотитовый от мелко- до средне- зернистого	Ф-116	27	120	3,24	9,5	1,32	16	1,93	21	1,93	16	1,44	73	1,26	1	_
	Гнейс амфибол-биотитовый от мелко- до среднезернистого	Φ-116	78	420	2,45	14	1,28	58	1,90	23	2,17	12	1,33	85	1,14		
	Гнейс биотит-амфиболовый от мелко- до среднезернистого	Φ-116	25	660	2,58	20	1,40	120	2,33	23	1,82	13	1,31	83	1,20	-	
Б.	Первично-осадочные																
	Гнейс биотитовый мелкозернистый	Φ-102 Φ-113	86	130	1,38	15	1,27	28	1,46	31	2,30	18	1,61	190	1,31	-	17.00
	Гнейс биотитовый, участками графит- содержащий мелкозернистый	Φ-110	27	70	2,00	11	1,36	32	2,06	43	1,87	16	2.62	220	2,14	2,2	2,95
	Гнейсы графит- и сульфидсодержащие от мелко- до среднезернистых	Φ-110	21	91	1,41	21	1,72	122	1.67	105	1.29	22	2.44	310	1.27	17	2.96
	Гнейсы графит- и сульфидсодержащие, с кордиеритом, сильно мигматизиро- ванные	Φ-110	9	73	1.39	17	1.66	114	1.81	88	1.38	25	1 77	261	1.90	16	9.59
В.	Черные сланцы Фенио- скандии				.,		1,00		1,01	00	1,00	10		201	1,50	10	2,02
	 а) района Куопио (Lonka, 1967) б) Лампинсаариского рудного комп- декса (Wennervirta и до 1970)* 		10	167		29		101		90		16		93		-	
	пр. 90 пр. 2100		2 12	-		20 28		100 260		76 150		11 48		220 700		=	

* Среднеарифметическое содержание.

пирротинах объясняется в первую очередь неоднородностью первичного состава рудного вещества, а также перераспределением его в процессах метаморфизма. Если сопоставить содержания микроэлементов в этих пирротинах с их содержанием в пирротинах из сингенетических высокометаморфизованных руд и из субвулканических гидротермальных руд (Цамбел и др., 1971), то выясняется, что они занимают промежуточное положение между этими типами пирротинов. Имея в виду сказанное, а также учитывая характер сульфидной минерализации, вполне правдоподобно объяснить, что накопление рудного вещества в вулканогенных породах происходило одновременно с вулканической деятельностью.

Уровень содержаний Cr, Co, Ni, Cu, Pb, Zn и Mo в первично-осадочных гнейсах толщи обычно занимает промежуточное положение между содержанием этих элементов в более основных и в более кислых разновидностях вулканогенных пород. Исключение составляют только графит- и сульфидсодержащие гнейсы, в которых содержание указанных элементов явно аномальное и наиболее близко к содержанию их в глубоководных глинистых осадках (табл. 2). Аналогично породам вулканогенного ряда в осадочных гнейсах выделяются слои и участки с аномальным содержанием элементов, которые в большинстве случаев сопровождаются явной сульфидной вкрапленностью или прожилками.

Содержание и распределение микроэлементов в графит- и сульфидсодержащих разновидностях глиноземистых гнейсов изучены в скважине Ф-110 (Ягала). Здесь в темно-серых микро- и мелкозернистых (0,1—0,5 мм) гнейсах (табл. 2) количество микроэлементов превышает фоновое в 2—3 и более раз и приближается к содержанию этих элементов в черных сланцах открытой части Балтийского щита. Повышенные концентрации Сг, Со, Ni, Сu, Zn и Мо отмечаются в микро- и мелкозернистых немигматизированных разновидностях пород, т. е. в слоях с развитой сингенетической сульфидной минерализацией первой генерации первой стадии (Петерселль, 1974).

В мигматизированных разновидностях, где преобладает перекристаллизованная и переотложенная сингенетическая сульфидная минерализация, содержание этих элементов несколько ниже, а содержание Pb и Ва несколько выше. Такое распределение элементов, увеличение дисперсии и отношения Ba : Sr с одновременным повышением содержания Ва и уменьшением Sr в мигматизированных разновидностях графитсодержащих гнейсов позволяет предполагать, что мигматизация происходила с привносом щелочно-кислого материала из более глубоких зон гранитизации или из других источников и вызывала уменьшение или увеличение содержаний и перераспределение элементов. Вероятность такого предположения подтверждается также различиями в содержаниях микроэлементов в пирротине первой и второй генераций (табл. 1). Увеличение отношения Ni: Со в пирротине второй генерации в скважине Ф-110 указывает, по-видимому, на тот факт, что образование сульфидов шло путем метаморфогенной перекристаллизации и перераспределения сульфидов первой генерации при более высоких температурах, в результате чего Ni сконцентрировался в пирротине (Цамбел, и др., 1971). Метаморфической перекристаллизацией и перераспределением объясняется, видимо, также образование редких включений пентландита в пирротине второй генерации и крайне неравномерное содержание халькопирита, сфалерита и других сульфидов в породе. Вполне вероятно, что образование кристаллов молибденита связано также с метаморфической перекристаллизацией и перераспределением рудного вещества.

4 ENSV TA Toimetised K * G - 3 1974

Наиболее контрастные аномалии Ni, Cu, Pb, Zn, Mo, а нередко также F и Au сопровождают интервалы керна с прожилковым типом оруденения или отдельные участки графитсодержащих гнейсов с высокой, явно наложенной, концентрацией сульфидов (Петерселль, 1974). Содержания элементов в отдельных пробах из этих интервалов превышают в десять и более раз фоновое содержание и хорошо соответствуют составу рудной минерализации. Эти геохимические аномалии нередко имеют сложное строение. В их пределах график распределения элементов во вмещающих породах имеет зигзагообразную форму и им свойственно зональное распределение элементов. Последнее выражается прежде всего в изменчивости величины отношений линейной продуктивности Си, Zn, Ni, Mo, F и других элементов, а также в зональном изменении контрастности аномалии. Обычно Zn образует наиболее широкие, но менее контрастные аномалии по сравнению с Си, Рb и Мо. Аномалии F, хотя и контрастные, наиболее узкие и не всегда сопровождают аномалии упомянутых элементов.

Секущие прожилки сульфидов в зависимости от минералогического состава подразделяются на пиритовые и рудные (Петерселль, 1974). Анализы мономинеральных фракций показывают, что пириты из «рудных» прожилков выделяются высоким содержанием Cu, Pb, Zn и Ag, а также As и более низким отношением Ni : Со (табл. 1). По этим показателям пириты наиболее близки к магматогенным гидротермальным пиритам и существенно отличаются от пиритов высокометаморфогенного генезиса (Цамбел и др., 1971). Несколько отличные содержания микроэлементов наблюдаются в пирите из скважины Ф-113 (табл. 1). Они наиболее близки к содержаниям этих элементов в пирротине из прожилков той же скважины. Если учесть, что в пирите из рудных прожилков этого района установлены реликты пирротина (Петерселль, 1974), то вполне вероятно предположение об отнесении этих прожилков к высокометаморфогенным сульфидам, генетически связанным с перераспределением рудного вещества в ходе последней фазы метаморфизма и мигматизации.

При сопоставлении характера сульфидной минерализации (Петерселль, 1974), средних содержаний и ассоциаций микроэлементов в вулканогенных породах и в немигматизированных или слабомигматизированных гнейсах осадочного генезиса видно их сходство друг с другом. Эти показатели в гнейсах осадочного генезиса занимают, за редкими исключениями, промежуточное положение между характерными для более основных и более кислых разновидностей вулканогенных пород. Принимая во внимание различия в характере миграции микроэлементов в процессах осадконакопления, напрашивается вывод, что основным источником рудного вещества в первично-осадочных породах ягалаской толщи служила также вулканическая деятельность геосинклинальной стадии развития района. Принципиально к аналогичному выводу в смежных районах пришли П. Хегеманн (Vähätalo, 1953) при исследовании черных сланцев на территории Финляндии и А. А. Предовский и др. (1967) при изучении рудной минерализации в метаморфических толщах Приладожья.

В процессе метаморфизма и мигматизации, в зависимости от конкретных термодинамических условий и подвижности элементов (Чернов и др., 1970), это рудное вещество в пределах толщи перекристаллизовывалось и перераспределялось. Такой вывод подтверждается наличием пирротиновых прожилков, непосредственно связанных с перекристаллизованными сингенетическими скоплениями сульфидов и вкрапленностью сульфидов в мигматитобразующих гранитах.

Несколько иной характер носит прожилковый тип оруденения. Непосредственная связь прожилков с сингенетической вкрапленностью или другими источниками рудного вещества не установлена. Безрудные пиритовые прожилки, которые широко распространены и с которыми не связаны или развиты крайне слабо типичные околорудные изменения, видимо, приурочены к последним стадиям метаморфизма и мигматизации. Практической ценности они не представляют.

Наибольший поисковый интерес представляют «рудные» пиритовые прожилки, иногда с реликтами пирротина. Они характеризуются высокими содержаниями сульфидов Cu, Pb и Zn и обычно сопровождаются четкими гидротермальными изменениями вмещающих пород. По количественному и качественному содержанию в них микроэлементов пириты этих прожилков наиболее близки к пиритам гидротермального генезиса.

Геологи, изучавшие генезис сульфидных месторождений и рудопроявлений на открытой части Балтийского щита, не пришли в этом вопросе к единому мнению, хотя все признают наложенный характер оруденения. В частности, П. Эскола (Eskola, 1914), В. Вяхятало (Vähätalo, 1953), П. Гейер (1967), Л. Хюваринен (Hüvärinen, 1969) связывают сульфидные месторождения генетически с синорогенными гранитоидными интрузиями, Х. Веннервирта и др. (Wennervirta и др., 1970), Л. Гриненко и др. (1971) считают сульфидные руды генетически связанными с глубинными очагами, В. Мармо и др. (Магто и др., 1951), М. Саксела (1959), Н. Магнусон (Magnusson, 1970) — с мобилизацией рассеянного рудного вещества в ходе метаморфизма и гранитизации. На основе интерпретации имеющегося материала есть основания предполагать, что наложенная сульфидная минерализация в ягалаской толще имеет сложную природу. Она связана генетически частично с мобилизацией и перераспределением рудного вещества внутри толщи, частично с более глубокими очагами метаморфизма и консолидацией ультраметаморфических гранитоидов (Глебовицкий и др., 1973) или же с невскрытыми к настоящему времени интрузиями.

ЛИТЕРАТУРА

Гейер П. 1967. Докембрий Швеции. В кн.: Докембрий Скандинавии. М.

- Глебовицкий В. А. 1971. Проблемы эволюции метаморфических процессов в
- подвижных областях. Л. Гриненко Л. Н., Воннюов Д. М., Ручкин В. Г., Тугаринов А. И. 1971. Изотопный состав серы сульфидов серноколчеданных месторождений Каре-лии и некоторые вопросы их генезиса. Геология рудных месторождений, XIII, Nº 2
- Кивисилла Я. Я., Петерселль В. Х., Пуура В. А. 1974. О методике изучения и результатах оценки рудоносности кристаллического фундамента Эстонии по геохимическим данным, Минск, ИГГ АН БССР.
- Петерселль В. Х. О сульфидной минерализации в кристаллических породах яга-лаской толщи. Изв. АН ЭССР, Хим. Геол., 23, № 2. Предовский А. А., Петров В. П., Беляев О. А. 1967. Геохимия рудных эле-ментов метаморфических серий докембрия (на примере Северного Приладожья). Л
- Саксела М. 1959. Происхождение руд Оутокумпу в свете тектонометаморфической мобилизации вещества. Новости зарубежной геологии, вым. П. ОНТИ. ВСЕГЕИ.
- Цамбел Б., Ярковский И. 1971. Геохумия никеля и кобальта в пирротинах
- Цамостя Б., ярковский П. 1971. Теолемия инкели и кооали в инкротинах различных генетических типов. В кн.: Геология и геохимия рудных место-рождений. М.
 Чернов В. М., Инина К. А., Горьковец В. Я., Раевская М. Б. 1970. Вулканогенные железисто-кремнистые формации Карелии. Тр. Ин-та геоло гии Карельского филиала АН СССР, вып. 5. Петрозаводск.

4*

235