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ABSTRACT  
The present study focuses on determining the position of the lower boundary of the Silurian 
System in the eastern Baltic region. To achieve this, we conducted a comprehensive analysis of 
stable isotopic curves, combined with previously published data on the graptolite record. Our 
isotopic correlations are primarily based on the δ13Corg curve of the Dob’s Linn section, the GSSP 
of the Silurian System, and the δ13Ccarb curve of the Monitor Range section in Nevada. Our results 
provide robust evidence for correlating the basal Varbola Formation, the lower part of the Õhne 
Formation and the Stačiūnai Formation, and suggest their latest Ordovician age. The integration 
of stable isotopic data and graptolite records allows for a more accurate characterisation of the 
Ordovician–Silurian boundary in this region. 
 

Introduction
Until the 2000s, the lower boundary of the Silurian System in the Baltic region was 
correlated with a major gap and turnover in shelly faunas. A major hiatus is observable 
in nearly all outcrop and subsurface sections of the eastern Baltic area. The formation 
of the hiatus was ascribed to the glacioeustatic sea-level fall already in the 1970–80s 
(e.g., Jaanusson 1979; Kaljo et al. 1988). The most remarkable change in fossil 
assemblages in the Ordovician–Silurian transition interval is confined to this par -
ticular level (see Nestor et al. 1991 for a summary). The post-extinction interval is 
characterised by the gradual appearance of new species in all fossil groups. The first 
new taxa were usually regarded as the ‘Silurian fauna’ in most papers. Even in the 
offshore sections, the hiatus marks a complete turnover, and the overlying strata are 
characterised by an impoverished fossil assemblage that was formerly regarded as of 
Silurian age, such as in the Jurmala core section in western Latvia (see Meidla et al. 
2020). The occurrence of a hiatus in the deep-shelf Jurmala section proves that the 
drop in sea level was prominent, compared to other less remarkable sea-level fluc -
tuations recorded in the Ordovician succession of the region (Kiipli and Kiipli 2020).  

During the last decade, research advances, particularly new data from stable 
isotopic geochemistry, have questioned the traditional concept of the lower boundary 
of the Silurian System, and this is also causing problems for Ordovician stratigraphy.  

The general understanding that the latest Hirnantian, after the second Hirnantian 
extinction wave, is characterised by a survival fauna has long been reflected in 
research papers (e.g., Brenchley et al. 1994; Marshall et al. 1997; Hammarlund et al. 
2012, etc.). However, it did not affect the correlations in the Ordovician–Silurian 
boundary interval in Estonia, Latvia and Lithuania. The position of the system 
boundary in the regional succession was first challenged on the basis of the stable 
carbon isotopic record, after the discovery of a long falling limb of the Hirnantian 
Carbon Isotopic Excursion (HICE), reaching the strata traditionally attributed to the 
Silurian in several sections (Meidla et al. 2011; Bauert et al. 2014; Ainsaar et al. 
2015). A later study (Meidla et al. 2020) on the comparison of the regional succession 
with the North American Monitor Range section suggests that in the middle-lower 
ramp sections the system boundary occurs more than 10 m higher than previously 
believed. However, because of the lack of diagnostic graptolites and conodonts, a 
proper biostratigraphic marker for this boundary could not be identified in the 
particular succession (Meidla et al. 2016). This view added new aspects to earlier 
interpretations of the stable carbon isotopic profiles of the region (e.g., Brenchley et 
al. 2003, fig. 13), but did not propose a new marker for the boundary.  
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This paper aims to discuss the possibilities of locating 
this important stratigraphic boundary in the regional suc -
cession, supplementary boundary criteria and correlation of 
the rock units in the Ordovician–Silurian boundary interval 
in Estonia, Latvia and northernmost Lithuania. 

Materials and methods  
This paper summarises the most recent palaeontological and 
stable isotopic evidence from the Ordovician–Silurian transi -
tion interval of the study area, published and in press. The 
new paired carbonate and organic matter carbon isotopic 
curve of the Reinu section is complemented with data from 
the Tartu (Bauert et al. 2014), Jurmala (Meidla et al. 2011) 
and Likėnai (Hints et al. in press) core sections. The bio -
stratigraphically dated global key sections referred to in this 
paper are the Dob’s Linn (GSSP of the Silurian System; Jones 
et al. 2011) and the Monitor Range sections (after Finney et 
al. 1999 and LaPorte et al. 2009). 

Results and discussion 
Recent δ13C studies in the Ordovician–Silurian transition 
interval have revealed a number of sections where, in bio -
stratigraphic sense, the ‘basal Silurian strata’ correspond to 
the falling limb of the HICE. This is true for the lower part 
of the Stačiūnai Formation in the Jurmala core (Meidla et al. 

2011), the lower part of the Õhne Formation in the Tartu core 
section (Bauert et al. 2014) and the lowermost part of the 
Varbola Formation in Estonia – the Koigi Member and some 
overlying strata in the Karinu, Viki and Kamariku core sec -
tions (Hints et al. 2014; Ainsaar et al. 2015). The same applies 
to the newly studied section in the Reinu quarry, northern 
Estonia (see Fig. 1). Some of the sections also reveal a slow ap -
pearance of post-extinction ‘Silurian’ species of various shelly 
fossil groups and chitinozoans. Several of these species were 
traditionally used for locating the system boundary in the 
non-graptolitiferous Ordovician–Silurian boundary suc ces -
sions all over the eastern Baltic area. This is true for several 
chitinozoan species (Spinachitina fragilis – see Põldvere et al. 
1998, Ancyrochitina laevaensis – see Hints et al. 2014; Nõlvak 
et al. 2023), conodonts (Ozarkodina ex gr. oldhamensis – 
see Kaljo et al. 2008) and ostracods (Longiscula smithii, 
Rectella procera, Microcheilinella mobile, M. rozhdestvenskaja, 
Bipunc to primitia bipunctata – see Meidla et al. 2011). The 
macrofossil record in the sections with distinctive stable 
carbon isotopic signatures is very limited, but the ranges of 
all taxa previously recorded in the lower Varbola, Õhne and 
Stačiūnai formations need to be validated. 

The organic carbon isotopic (δ13Corg) curves add a new 
aspect to the ongoing discussion. The shape of this curve in 
the Tartu and particularly in the Likėnai (e.g. Hints et al. in 
press) sections is remarkably different from the corresponding 
δ13Ccarb curves. The δ13Corg values are high only in a short 
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Fig. 1.  Stable carbon isotopic correlation of the sections along the Reinu-Tartu-Jurmala-Likėnai profile and with the biostratigraphically 
dated global reference sections at Dob’s Linn, UK (after Jones et al. 2011) and the Monitor Range, US (after Finney et al. 1999 and 
Laporte et al. 2009). Abbreviations: Fm – formation, K. – Kamariku Member (Mb), P. – Parovėja Fm, Pu. – Puikule Mb, R. – Röa Mb,  
Ro. – Rozeni Mb, Ru. – Rūja Mb, S. – Siuge Mb, Sal. – Saldus Fm, V. – Vohilaid Mb.  



interval that is biostratigraphically confined to the Porkuni 
Regional Stage (RS). The δ13Ccarb curves of stratigraphically 
more complete sections reveal a long decline in the values 
in the Juuru RS. In the Jurmala and Likėnai core sections 
(Fig. 1), the falling limb of the HICE extends throughout the 
entire Stačiūnai Formation. This discrepancy may look con -
troversial, but comparison with the stratotype section in Dob’s 
Linn, Scotland, and the Laframboise Point section in 
Anticosti, Canada, suggests that the interval of high δ13Corg 
values may correspond to the Metabolograptus extraordi -
narius Graptolite Zone (Jones et al. 2011), whilst the HICE 
does most probably range up into the M. persculptus Zone in 
the eastern Baltic area (Meidla et al. 2020).  

However, the question about the position of the system 
boundary is still open. The correlation with the global stan -
dard remains complicated because of the poor graptolite 
record of the Ordovician–Silurian transition in a large area 
reaching from northwestern Estonia (Nestor and Einasto 1997) 
across Latvia (Gailite et al. 1987) and Lithuania (Paškevičius 
1997) to marginal northeastern Poland (Podhalańska 1977). 
The only known section with graptolites in the boundary 
interval (Ulst 1992) has not been studied for other fossil 
groups and stable isotopes. In other sections all over the region, 
the graptolite record seems to begin in the Coronograptus 
cyphus Graptolite Zone, i.e., in the upper Rhuddanian. 

In the hope of covering this ‘information gap’ in the 
biostratigraphic succession, we tried to use the upper limits 
of the stable carbon isotopic excursions (both δ13Corg and 
δ13Ccarb) as correlation markers. Figure 1 displays the stable 
carbon isotopic correlation of the sections along the Reinu-
Tartu-Jurmala-Likėnai profile and with the biostratigraph - 
ically dated global reference sections. Based on the Dob’s 
Linn section, the Metabolograptus extraordinarius Zone is 
taken as nearly equivalent to the prominent Hirnantian δ13Corg 
excursion. The M. persculptus Zone is correlated with the 
falling limb of the HICE, as in the Monitor Range section. 
These results suggest an improved correlation with the 
Ordovician–Silurian boundary strata in Estonia and Latvia.  

The correlation of the Ordovician–Silurian boundary 
strata in Fig. 2 is a compilation based on Gailite et al. 1987, 

Nestor 2012, Männik 2014, Meidla et al. 2020 and the cor -
relation in Fig. 1. The basal part of the Varbola Fm cor - 
respond ing to the limit of the falling limb of the HICE has 
been attributed to the Ordovician in several papers already. 
The same is true for the lower part of the Õhne Fm (Meidla 
2020 and references therein) and for the Stačiūnai Fm (see 
Fig. 1). The topmost part of the Õhne Fm in the Ikla core 
reveals graptolites indicative of the Coronograptus cyphus 
Zone (Kaljo and Vingisaar 1969). According to Gailite et 
al. (1987), the same is true for the topmost Remte Fm, but 
not for the Apaščia Fm, which still remains poorly dated. 
The Dobele Fm is characterised by graptolites from the 
Demirastrites pectinatus–D. triangulatus Zone up to the 
Stimulograptus sedgwickii Zone, whilst a tentative gap be -
tween the Apaščia and Dobele formations is drawn as 
equivalent to the C. cyphus Zone, which may be missing in 
the Apaščia–Dobele transition interval, judging from the 
published data (mainly Gailite et al. 1987).  

Conclusions 
Regional Ordovician and Silurian correlation charts of the 
eastern Baltic area have mainly been based on biostrati -
graphic evidence, but the data on the Ordovician–Silurian 
transition interval are poor and controversial. Integration of 
the stable isotopic evidence with the limited data on the dis -
tribution of graptolites allows the correlation of the Varbola, 
Õhne and Stačiūnai formations to be justified. As the lower 
boundary of the Silurian System still does not have a proper 
biostratigraphic marker in the regional succesion, the ranges 
of all zonal microfossil taxa previously recorded in the lower 
Varbola, Õhne and Stačiunai formations need to be validated 
for its definition.  
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Fig. 2.  Correlation of the Ordovician–Silurian boundary strata in Estonia and Latvia with the graptolite zones and the global standard. 
The compilation is based on Gailite et al. 1987, Nestor 2012, Männik 2014, Meidla et al. 2020 and the authors’ new data.  
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