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Abstract. Vääna Lagoon (59°22′30″N, 24°25′00″E) is located 25 km west of Tallinn in ancient Vääna Klint Bay at a 22 m Litorina 
Sea isobase. Lagoonal deposits were reinvestigated and new results of pollen, diatom, loss-on-ignition, magnetic susceptibility 
analyses, and radiocarbon datings were used for the reinterpretation of previous studies. The onset of the Litorina Sea trans-
gression in the region is dated to 8300 cal yr BP and culmination to about 7000 cal yr BP. New material shows a single Litorina 
Sea transgression and denies the twofold transgression suggested earlier. 
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INTRODUCTION 
 
North and West Estonia are classical areas for the study 
of the post-glacial shore displacement in the eastern part 
of the Baltic Sea basin. The elevated position of the 
different Baltic Sea shorelines along the glacio-
isostatically uplifting coastal area has favoured the shore 
displacement studies in Estonia. In spite of the long 
tradition of this research, there are several problems 
waiting to be specified, especially those connected with 
the development of the Litorina Sea. The Litorina Sea 
was transgressive due to the general rise of ocean level 
caused by melting of glaciers during the mid-Holocene 
thermal maximum (Fairbanks 1989; Yu 2003). 

The first clear evidences of the Litorina Sea trans-
gression in Estonia were obtained from sediment 
sequences of isolated lakes and ancient lagoons (Kents 
1939; Thomson 1939; Kessel 1963; Raukas et al. 1965; 
Kessel & Raukas 1979). On the basis of the location 
of beach ridges at two different levels (21.67 and 
18.77 m a.s.l.) near Vääna, Kents (1939) proposed a 
twofold Litorina Sea transgression. Biostratigraphical 
studies carried out by Thomson (1939) and Kessel 
(1963) at Vääna bog confirmed the presence of marine 
gyttja deposits rich in brackish-water diatoms, especially 
Campylodiscus clypeus. This gyttja bed rested on 
calcareous gyttja, which Thomson interpreted as isolation 
contact sediment (bleke). The clayey bottom bed under 
the bleke contained freshwater diatoms typical of Ancylus 
Lake. Thomson (1936, p. 162) mentioned that two trans-
gressions of the Litorina Sea occurred close in time to 
each other and changes in the Pinus pollen graph could 
be interpreted as twofold sea level alteration. These 

studies became a benchmark and provided grounds for 
differentiating two phases in the Litorina Sea transgression 
in Estonia (Kessel 1963; Kessel & Raukas 1979, 1984). 
However, later studies in the Pärnu region confirmed 
only one Litorina Sea transgression in Estonia (Raukas 
et al. 1995a; Veski et al. 2005). 

Studies around the Baltic Sea also show a variable 
number of the Litorina Sea transgressions. Multiple 
stratigraphic sequences from southern Sweden revealed 
five minor transgressions (Yu 2003; Berglund et al. 
2005) with rapid sea level rise at 7600 cal yr BP (Yu et 
al. 2007). In southern Finland only one main Litorina 
Sea transgression has been recorded (Seppä et al. 2000; 
Miettinen 2002, 2004), whereas a sediment sequence 
(Tchernaya Rechka) on the Karelian Isthmus hinted at a 
twofold transgression (Miettinen et al. 2007). The relative 
sea level curve along the coast of Western Pomerania 
suggests two transgressions during the Litorina Sea 
stage (Lampe 2002). New sea level curves for the 
southern North Sea also displayed several small trans-
gression and regression waves (Behre 2007). So, the 
evidences of the Litorina Sea transgressions are still 
diverse. 

Radiocarbon dates from the Vääna Lagoon deposits 
were absent up to now, while those from other randomly 
located peat and gyttja layers in Estonia, buried under 
Litorina Sea sands, vary considerably (Saarse et al. 
2006). Numerous dates on the start of the Litorina  
Sea transgression are available only from SW Estonia 
(Veski et al. 2005). 

We revisited ancient Vääna Lagoon and conducted 
detailed biostratigraphical and lithostratigraphical analysis 
of the Litorina Sea deposits. Using accelerator mass 
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spectrometry (AMS) and conventional 14C dating, we 
established a chronology of the studied sequence. Our 
aim was to determine whether there were one, two or 
several broad transgressions during the Litorina Sea 
stage and to provide timing to the Litorina Sea water-
level oscillations. 
 
 
GEOLOGICAL  SETTING 
 
Northwestern Estonia deglaciated about 12 700 cal yr BP 
(Hang 1997; Kalm 2006) and was afterwards flooded 
by waters of the Baltic Ice Lake, Yoldia Sea, Ancylus 
Lake, and Litorina Sea. In NW Estonia the Litorina Sea 
inundated mostly low-lying klint bays. Ancient Vääna 
Lagoon (ca 25 km west of Tallinn), which was examined 
lately, lies in one of such klint bays (Fig. 1). Vääna 
Klint Bay is filled with ca 70�100 m thick glacial, late-
glacial, and Holocene deposits (Arold 1971; Raukas & 
Liivrand 1971), which rest on the Early Ordovician 
Pakerort age argillite. Several sand ridges extend across 
the klint bay and cause the Vääna River to wind. Varved 
clays on the riverbanks are sensitive to landslides and 
from time to time blocked the water flow to the sea, 
forcing the river to erode new channels (Treial & 
Künnapuu 1962). Ancient Vääna Lagoon holds now a 
raised bog with the convex surface extending to about 
4 m above the surroundings (up to 24.7 m a.s.l.). The 
central part of the bog is being exploited by peat cutting, 
and is dotted with milling peat piles and crossed by a 
service road. 

The Vääna bog is bordered by the Keila-Joa�Türi-
salu klint headland in the west and by the Suurupi klint 
headland and spit in the east (Tammekann 1940). The 
spit core consists of cemented crystalline and carbonate 
rocks and has been interpreted as an islet formed at the 
beginning of the Litorina Sea transgression (Raukas et al. 
1965). The ancient lagoon was located behind the spit 
and had a narrow threshold near Vahiküla at 18.2 m a.s.l. 
(Kents 1939). The contact between gyttja containing 
brackish-water diatoms and peat has been levelled at the 
same elevation as the lagoon threshold (18.2 m a.s.l.; 
Kents 1939). 
 
 
MATERIAL  AND  METHODS 
 
Several parallel sediment cores were taken with a 
Russian peat sampler from the central part of the Vääna 
raised bog (59°22′30″N, 24°25′00″E). The upper part  
of the peat layer was removed in the course of peat 
extraction and a 2.25 m long sediment sequence (from 
an altitude of 19.10�16.85 m a.s.l.) was selected for 
detailed laboratory analyses. 

Magnetic susceptibility was measured with the 
Bartington Instruments Ltd. high-resolution surface 
scanning sensor MS2E. The sediment surface was 
cleaned with a microscope glass slide, covered with a 
thin plastic film, and the susceptibility was measured on 
the sediment surface at 1-cm resolution. 

The organic matter (OM) content was quantified by 
loss-on-ignition (LOI) analysis at 525 °C. The carbonate 
content was estimated in terms of the difference between 
LOI at 900 °C and 525 °C multiplied by 1.36 (Heiri et al. 
2001). The ignition residue was estimated as a mineral 
matter content. The measurements were performed on 
continuous 1-cm-thick subsamples. 

Pollen analysis was carried out with the sampling 
interval of 5 cm. The samples were prepared following 
standard techniques (Berglund & Ralska-Jasiewiczowa 
1986; Fægri et al. 1989). The samples with a high amount 
of mineral material were treated with fluoride acid and 
stored in glycerine. A minimum of 500 terrestrial pollen 
grains were counted in each subsample. The basis for 
the percentage calculations was the sum of terrestrial 
pollen, i.e. the sum of arboreal pollen (AP) and non-
arboreal pollen (NAP). The percentages of the other 
identified microfossils were calculated from the basic 
pollen sum. 

Diatom samples were digested in hydrogen peroxide 
according to Battarbee et al. (2001) and the cleaned 
subsamples were dried onto cover slips and permanently 
mounted onto microscope slides using Naphrax medium. 
At least 350 diatom valves were counted from each 
subsample (except the lowermost part of the studied 
sequence where microfossils were rare) under a Zeiss 
Axiolab light microscope at × 1000 magnification using 
phase-contrast optics and were identified using standard 
floras (e.g. Krammer & Lange-Bertalot 1986, 1988, 
1991a, b). Chrysophyte cysts were counted as separate 
categories under microscope and the ratio of chryso-
phycean cysts to diatoms was calculated. Diatoms were 
grouped according to their habitat into plankton and 
periphyton, the latter including benthic, epilithic, and 
epiphytic life forms, and into brackish-water, salinity-
indifferent, and freshwater taxa according to their salinity 
preferences. The sediment composition, pollen, and 
diatom diagrams were plotted with TGView software 
(Grimm 2004). 

Seven 14C dates were obtained from the Vääna 
sediment sequence. Two conventional radiocarbon datings 
of the lowermost part of the peat were performed in the 
Institute of Geology at Tallinn University of Technology, 
and four AMS 14C datings of the terrestrial plant remains 
(in order to eliminate the error caused by reservoir 
ages of bulk sediment) and one dating of the bulk 
gyttja sample were carried out in Poznan Radiocarbon 
Laboratory. The radiocarbon dates were converted to 
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calibrated age (cal yr BP) at one sigma range using the 
IntCal04 calibration curve (Reimer et al. 2004) and the 
Calib Rev 5.0.1. program (Stuiver et al. 2005). All 
ages mentioned in text refer to calendar years BP 
(0 = AD 1950). 
 
 
RESULTS 
Lithostratigraphy,  magnetic  susceptibility,  and  
sediment  composition 
 
The lithostratigraphy from top to bottom of the studied 
sediment sequence is given in Table 1. The basal part of 
the core opened up sediments that have deposited in 
different environments and can be divided into five 
lithostratigraphical units (Fig. 2). Basal fine-grained sand 
(core depth 281�325 cm; altitude 16.87�17.31 m a.s.l.) 
with the OM content < 1% is slightly calcareous  
(11�13%). In calcareous silt (core depth 260�281 cm; 
altitude 17.31�17.52 m a.s.l.) OM is still low, < 6%, but 
the carbonate content increases rapidly from 10% at the 
lower limit of the unit to 30% near its upper limit, and 
that of mineral matter decreases from 83% to 64%. This 
unit contains few mollusc shells. In calcareous silty gyttja 
(core depth 237�260 cm; altitude 17.52�17.75 m a.s.l.) 
CaCO3 and mineral matter are prevailing but the content 
of OM increases steadily. Mollusc shells, among which 
Bithynia tentaculata is most abundant, are present in 
substantial numbers at the upper limit of the unit. In the 
coarse detritus gyttja unit (core depth 192�237 cm; 
altitude 17.75�18.20 m a.s.l.) sediment composition 
changes rapidly. At the lower limit of the unit the content 
of OM reaches 40%, but decreases continuously upwards 
in the sediment sequence. The content of mineral matter 
increases upsection and the carbonate content is stable 
with values around 4%. At a core depth of 192 cm 
(altitude 18.20 m a.s.l.) a sharp boundary occurs between 
coarse detritus gyttja and peat, which suggests a possible 
hiatus in sedimentation. 

Magnetic susceptibility varies considerably (Fig. 2) 
and shows a lowering trend upwards in the minerogenic 

sediment from 170 × 10−6 to 20 × 10−6 SI. Magnetic 
intensities are very low in calcareous silty gyttja and 
coarse detritus silty gyttja, at an altitude of 17.50�
17.90 m a.s.l. In the topmost part of coarse detritus 
gyttja (altitude 18.15 m a.s.l.) a well-developed peak in 
magnetic susceptibility was registered (Fig. 2). 
 
Biostratigraphy 
Diatoms 
 
The basal sand contains very few diatoms, representing 
the species that are generally found in large freshwater 
lakes and are also common in sediments of Ancylus 
Lake, e.g. planktonic diatoms Aulacoseira islandica and 
Stephanodiscus neoastraea, as well as littoral taxa  
such as Diploneis domblittensis, Gyrosigma attenuatum,  
and Navicula scutteloides (Fig. 3). A similar diatoms 
assemblage with a rather high proportion of epiphytic 
Epithemia spp. ranges up to an altitude of 17.55 m a.s.l. 
A decline in large-lake planktonic diatoms is observed 
at the same level. In addition, relative abundance  
of periphytic large-lake diatoms decreases and the 
importance of diatom species living in small-sized hard-
water shallow lakes, such as Cymbella ehrenbergii, 
Gomphonema angustatum, Mastogloia smithii var. 
lacustris, and Navicula oblonga, as well as chrysophyte 
cysts, increases. Changes in diatom composition and 
abundance coincide with sediment transition from silt to 
calcareous silty gyttja. The changes in the stratigraphic 
record may be explained with the isolation of the basin 
from Ancylus Lake. At an altitude of 17.95 m a.s.l., in  
the middle section of coarse detritus silty gyttja, the 
relative abundance of freshwater periphytic diatoms and 
chrysophyte cysts decreases distinctly, whereas brackish-
water periphytic diatoms, such as Campylodiscus clypeus, 
Mastogloia baltica, and M. braunii increase towards the 
upper part of the unit (Fig. 3). Moreover, resting spores of 
Chaetoceros spp., commonly recovered in the sediments 
of the Litorina Sea stage of the Baltic basin (e.g. Andrén  
et al. 2000), are present. The diatom composition indicates 
brackish-water environment and re-opened connection  

 
 

Table 1. Lithostratigraphy of the Vääna sediment sequence 
 

Depth from 
sediment surface, 

cm 

Altitude, 
m a.s.l. 

Sediment description 

0−192 18.20−20.12 Phragmites�Carex peat, poorly decomposed 
192−237 17.75−18.20 Coarse detritus silty gyttja 
237−260 17.52−17.75 Calcareous silty gyttja, at 237 cm abundant mollusc shell fragments 
260−281 17.31−17.52 Calcareous silt 
281−325 16.87−17.31 Sand 
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to the sea, that is to say, the Litorina Sea transgression. 
However, the diatom assemblage does not imply that 
deep-water conditions were generated, on the contrary, 
shallow-water lagoonal conditions existed in the basin. 
 
Pollen 
 
Pollen stratigraphy of basal sediments at 17.01�
17.31 m a.s.l. opens with high and almost equal 
percentages of Betula and Pinus, low Alnus, Ulmus, 
Corylus, and Picea; and high abundance of algae 
(Fig. 4). Calcareous silt between 17.31 and 17.52 m a.s.l. 
is characterized by high abundance of Betula and Alnus 
and diminished Pinus. Corylus and Ulmus frequencies 
reach 10%. Quercus, Tilia, and Fraxinus are sporadically 
present. In calcareous silty and coarse detritus gyttja 
(altitude 17.52�18.20 m a.s.l.) the proportion of Quercus, 
Tilia, and Fraxinus in tree pollen has increased.  
Non-arboreal pollen, as well as aquatics Typha and 
Potamogeton appear, and green algae Pediastrum 
boryanum and Botryococcus are richly represented in 
detritus and silty gyttja. At an altitude of 18.20 m a.s.l. a 
sharp change in pollen composition occurred: Gramineae 
and Cyperaceae started to flourish, tree pollen decreased, 
and algae had a peak. 
 
Chronostratigraphy 
 
The age of Vääna sediments is based on five radio-
carbon dates (Table 2). The two lowermost AMS dates, 
namely those on terrestrial plant remains found at 
280 cm core depth (17.32 m a.s.l.) in the upper part of 
sand (3900 ± 40, Poz-24248) and on terrestrial plant 
remains found at 260 cm core depth (17.52 m a.s.l.) in 
the upper part of calcareous silt (5090 ± 40, Poz-24247) 
yielded erroneous (too young) ages. According to diatom 
stratigraphy these sediments deposited in Ancylus Lake. 
The dating 8040 ± 50 14C yr BP (Poz-24246) of coarse 
detritus gyttja, which accumulated in the shallow lake, 
indicates that the Vääna basin was isolated before 

9000 cal yr BP from the Ancylus Lake basin. Radiocarbon 
dates associated with the development of the Litorina 
Sea stage are in good accordance with biostratigraphical 
evidence. The AMS dating of the terrestrial plant 
macrofossil at a core depth of 220 cm (17.92 m a.s.l.) 
yielded a date of 7420 ± 40 14C yr BP (Poz-24267) 
(8310�8190 cal yr BP) and suggests that the water of 
the Litorina Sea had surpassed the basin threshold 
between 8200 and 8300 cal yr BP. The AMS sample 
of the terrestrial plant macrofossil from the uppermost 
part of coarse detritus gyttja at a core depth of 201.5 cm 
(18.105 m a.s.l.) dated to 6240 ± 40 14C yr BP (7250�
7070 cal yr BP, Table 2) indicates the approximate time 
of the Litorina Sea transgression maximum, confirmed 
by the maximum occurrence of brackish-water diatoms 
(Fig. 3). Two conventional radiocarbon dates from  
the lowermost 10-cm peat layer yielded the dates of 
5205 ± 60 14C yr BP (Tln-3037) and 5255 ± 60 14C yr BP 
(Tln-3036), respectively, suggesting the onset of peat 
accumulation around 6000 cal yr BP and a ca 1000-
year-long gap between sedimentation of detritus gyttja 
and peat. 
 
 
DISCUSSION 
 
The palaeoenvironmental data from the Vääna sediment 
sequence were used to reconstruct the Baltic Sea history 
of the region. The reconstruction is primarily based on 
biostratigraphic evidence of subfossil diatom assemblages 
and pollen assemblage zones, radiocarbon dating, as well 
as sediment lithology and composition. The available 
evidence of the altitude of elevated ancient shorelines is 
also taken into consideration. 

Judging by the diatom assemblages, i.e. taxa common 
for large freshwater lakes such as planktonic species 
Aulacoseira islandica and Stephanodiscus neoastraea, as 
well as littoral species Diploneis domblittensis, Gyrosigma 
attenuatum, and Navicula scutteloides, the basal sand of 
the studied core deposited in Ancylus Lake. 

 
 

Table 2. Radiocarbon dates from the Vääna sediment sequence 
 

Depth from 
sediment surface, 

cm 

Altitude, 
m a.s.l. 

Age, 
14C yr BP 

Lab. No. Calibrated age 
at one sigma 
(cal yr BP) 

Material 

183−187 18.29−18.25 5255 ± 60 Tln-3036 6175−5935 Peat 
187−192 18.25−18.20 5205 ± 60 Tln-3037 6170−5905 Peat 
201.5 18.105 6240 ± 40 Poz-24245 7250−7070 Plant remains  
220−221 17.92−17.91 7420 ± 40 Poz-24267 8310−8190 Plant remains  
235−236 17.77−17.76 8040 ± 50 Poz-24246 9020−8780 Gyttja, bulk 
260 17.52 5090 ± 40 Poz-24247 5910−5750 Plant remains  
280 17.32 3900 ± 40 Poz-24248 4410−4290 Plant remains  
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Fig. 1. Location of the study area, spatial distribution of the Litorina Sea maximum shoreline (bold black line), and the Litorina 
Sea shoreline isobases (white lines). Numbers indicate the Litorina Sea shoreline elevation in m a.s.l. 

 
 

  
Fig. 2. Loss-on-ignition, magnetic susceptibility and 14C dating results, environmental conclusions, and photos of the studied cores 
from Vääna. 
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Betula�Pinus�Ulmus and Corylus forest spread in 
the surroundings of Vääna. The other broad-leaved taxa 
have not surpassed their rational limit yet. Pollen 
diagrams compiled by Thomson (1939) and Kessel 
(1963) display similar changes in tree pollen taxa. 
According to Estonian Holocene stratigraphical chart 
(Raukas et al. 1995b), such pollen composition corres-
ponds to the Early Holocene. 

Sand is characterized by rather high magnetic sus-
ceptibility (Fig. 2). This is in good accordance with the 
elevated percentages of Fe2O3 (4.35%; Kiipli et al. 
2000) in the Early Ordovician Pakerort age argillite, 
which forms the bedrock around the lagoon and may 
have served as a possible source for Holocene sands in 
the study area. The decline in large-lake planktonic 
diatoms and domination of diatom taxa that with respect 
to life-form preferences constitute a benthic and epiphytic 
community show that the upper part of calcareous silt 
and the lowermost part of calcareous silty gyttja deposited 
in the regressive Ancylus Lake basin. 

Diatom and lithostratigraphic records provide 
evidence that an isolated independent lake existed for 
about 1000 years between the Ancylus Lake and 
Litorina Sea stages (Figs 2, 3). This is indicated in 
diatom stratigraphy by diatom species and chrysophyte 
cysts living in small shallow hard-water lakes. According 
to extrapolation, the isolation of Vääna Lagoon from 
Ancylus Lake has been timed to ca 9300 cal yr BP and 
this small coastal lake occurred at ca 8200�8300 cal yr BP 
(Figs 2, 3). 

Betula and Alnus were the dominant taxa at that  
time with an increased share of herbs (Gramineae, 
Cyperaceae) which covered the emerged areas near the 
coastal lake. The high abundance of Alnus pollen could 
result from the alder rim around the small isolated water 
body. 

The small lake was reconnected to the Baltic Sea 
during the Litorina Sea transgression, when the waters 
surpassed the threshold of Vääna Lagoon and filled the 
basin with brackish water. This is confirmed by the 
occurrence of littoral brackish-water diatoms, such as 
Campylodiscus clypeus, Mastogloia baltica, and 
M. braunii and the decline of freshwater taxa, indicating 
a shallow bay or lagoonal environment. In addition, the 
OM content decreased gradually and that of mineral 
matter increased probably due to more intensive shore 
abrasion during the Litorina Sea transgression. Kessel 
(1985) has found mollusc shells, namely Littorina 
littorea, L. saxatilis, Ceratoderma glauccum, etc., typical 
of the Litorina Sea, in the beach ridges and lagoonal 
deposits of nearby sites. The start of inundation coincides 
with the decline in Betula pollen and slight increase in 
Pinus. 

Diatom composition and interpolated radiocarbon 
dates suggest that the Litorina Sea transgression in the 
Vääna area culminated around 7000 cal yr BP (Fig. 3). 
A well-developed peak in magnetic susceptibility that 
occurs simultaneously with the highest abundance of 
mineral matter in coarse detritus silty gyttja and the 
highest values of brackish-water diatoms obviously 
referred to a culmination of the Litorina Sea level. 

However, the studied sediment record does not allow 
distinguishing the termination of the transgression. The 
very sharp boundary between coarse detritus silty gyttja 
and peat suggests an about 1000-year-long hiatus in 
sediment stratigraphy (Fig. 2, Table 2). The general 
diatom-stratigraphic feature for identification of the 
isolation contact from the Litorina Sea, the dominance 
of small-sized Fragilaria spp. during the isolation event, 
which has been recorded in several investigations around 
the Gulf of Finland (e.g. Eronen 1974; Seppä et al. 2000; 
Miettinen et al. 2007), is missing in the Vääna sediment 
sequence due to the absence of corresponding sediments. 

Our study revealed only one transgression, which 
reached an altitude of ca 22 m a.s.l., consistent with the 
elevation of the beach ridge near Vahiküla (21.67 m a.s.l.). 
No evidence of the existence of any short-term 
fluctuations during the Litorina Sea transgression was 
found. Judging from the levelled threshold, the altitude 
of beach formation, and thickness of sedimentary beds, 
the Litorina Sea transgression magnitude in the Vääna 
area was ca 4�5 m. The two slight peaks in the Pinus 
pollen curve, which Thomson (1939) interpreted as 
indications of the double Litorina Sea transgression, are 
not supported by the new data. 
 
 
CONCLUSIONS 
 
• New results of pollen, diatom, loss-on-ignition, 

magnetic susceptibility analyses, and radiocarbon 
datings, covering the time span 9300−7000 cal yr BP, 
give an improved temporal picture of the development 
of the Baltic Sea history in the Vääna area. 

• The isolation of Vääna Lagoon from Ancylus Lake 
has been timed to ca 9300 cal yr BP and a small 
coastal isolated lake existed in the depression up to 
ca 8200�8300 cal yr BP. 

• The intrusion of saline water into Vääna Lagoon 
started between 8200 and 8300 cal yr BP and the 
transgression culminated at ca 7000 cal yr BP. 

• New bio- and chronostratigraphical data indicate a 
single Litorina Sea transgression in the study area 
and do not yield any evidence of other sea-level 
fluctuations during the Litorina Sea. The amplitude 
of the transgression is estimated to be 4−5 m. 
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Litoriinamere  setted  Vääna  laguunis  Loode-Eestis 
 

Leili Saarse, Atko Heinsalu ja Siim Veski 
 

Vääna klindilaht, milles asus Litoriinamere laguun, nüüdisaegne Vääna raba, on keeruka arengulooga. Pärast mandri-
jää taandumist oli klindilaht pikka aega Läänemere vete poolt üle ujutatud. Maakoore neotektoonilise kerke ja 
Antsülusjärve veepinna alanemise tagajärjel umbes 9300 aastat tagasi isoleerus merest rannajärv, milles settis 
karbonaadirikas järvemuda. Litoriinamere transgressiooni käigus, mis algas umbes 8200�8300 aastat tagasi, ujutati 
klindilaht uuesti üle ja sinna kuhjusid rannavallid ning maasäär. Viimane eraldas avamerest laguuni, kus settis riim-
veelise diatomeeflooraga jämedetriitne järvemuda. Tuginedes uudsele biostratigraafilisele andmestikule, on väidetud, 
et Vääna ümbruses esines ainult üks Litoriinamere transgressioon, mis kulmineerus umbes 7000 aastat tagasi. 
 
 
 




