
Estonian Journal of Earth Sciences, 2011, 60, 3, 172�190 doi: 10.3176/earth.2011.3.05 

 172

 
 
 
 
Interpolative  mapping  of  mean  precipitation  in  the  Baltic  countries   

by  using  landscape  characteristics 
 

Kalle Remma, Jaak Jaagusa, Agrita Briedeb, Egidijus Rimkusc and Tiiu Kelvistea 
 

a Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; 
kalle.remm@ut.ee 

b Department of Geography, University of Latvia, Alberta St. 10, Riga LV-1010, Latvia 
c Department of Hydrology and Climatology, Vilnius University, 21/27 Čiurlionio St., Vilnius 03101, Lithuania 
 
Received 23 December 2010, accepted 14 March 2011 
 
Abstract. Maps of the long-term mean precipitation involving local landscape variables were generated for the Baltic countries, 
and the effectiveness of seven modelling methods was compared. The precipitation data were recorded in 245 meteorological 
stations in 1966�2005, and 51 location-related explanatory variables were used. The similarity-based reasoning in the Constud 
software system outperformed other methods according to the validation fit, except for spring. The multivariate adaptive 
regression splines (MARS) was another effective method on average. The inclusion of landscape variables, compared to reverse 
distance-weighted interpolation, highlights the effect of uplands, larger water bodies and forested areas. The long-term mean 
amount of precipitation, calculated as the station average, probably underestimates the real value for Estonia and overestimates it 
for Lithuania due to the uneven distribution of observation stations. 
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INTRODUCTION 
 
Long-term meteorological data, precipitation included, 
are traditionally recorded from permanent observation 
stations. Such point data, in the sense of spatial analysis, 
are used to draw conclusions on climate change and to 
estimate the meteorological and climatological parameters 
over a given territory � country, catchment area, etc. 

Point data measured at meteorological stations have 
limited representativity for wider regions. Precipitation 
is characterized by a very high spatial variability due 
to local convective showers, especially during the 
warm season. There is a need for spatial averaging  
of precipitation values for regions of different size 
(Omstedt et al. 1997; Rutgersson et al. 2001). Know-
ledge of the amount of precipitation is essential in 
hydrology for calculating water balance and river runoff 
(Bergström & Carlsson 1994).  

The coverage of the estimated values can be obtained 
via simple interpolation or using an algorithm that 
involves characteristics of every location. The involve-
ment of local landscape characteristics usually gives 
more reliable results than simple interpolation (Daly  
et al. 1994; Wei et al. 2005; Ninyerola et al. 2006;  
Sokol & Bli�ňák 2009; Moral 2010). An overview of 
predictive statistical models relating mean precipitation 

to altitude and its derivates has been given by Basist  
et al. (1994). 

Hitherto, maps of the mean precipitation in the 
Baltic countries were mainly drawn according to visual 
interpolation and assessments of the distance from the 
sea coast, elevation and slope exposition. The most 
often used precipitation map for Latvia was drawn by 
A. Pastors in 1987. The map was later improved and 
published by Ziverts (2004). Unfortunately, the data 
used for this map and the interpolation method are not 
documented. 

The latest published annual precipitation map for 
Lithuania is presented in Galvonaitė et al. (2007). The 
map is based on precipitation data of the years 1961�
1990 from 75 stations. Only the impact of major relief 
forms on the amount of precipitation was considered. 

In Estonia the first attempt to compose a mean 
pattern of annual precipitation by using landscape factors 
was made by Jaagus & Tarand (1988). Four factors for 
creating a model of the mean precipitation pattern were 
used � absolute height, windward and leeward parts of 
uplands, distance to the sea in the southwestern sector 
and the 3 km wide coastal zone. The model described 
two thirds of the total spatial variability of annual 
precipitation at the Estonian stations for 1966�1985.  
A new version of the maps for annual and monthly 
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(May, October) precipitation was published, using data 
from a longer period (1966�1998) (Jaagus 1999).  
In a previous study on precipitation in the Baltic 
countries (Jaagus et al. 2010), we interpolated the mean 
amount of precipitation using kriging interpolation 
between observation stations. Figures 2 and 3 of that 
paper depict the mean amount of precipitation in  
an extremely generalized way, smoothing non-typical 
results. 

Precipitation is characterized by a very high variability 
in space and time. Its daily values are rather random. 
General and stable spatial patterns become evident 
after summing up the daily precipitation into monthly, 
seasonal and annual values. Variation in the quantity 
of precipitation is usually observed due to differences 
in the surrounding landscape. Therefore, the use of 
precipitation totals recorded over longer periods, such 
as a season or a year, is much more reasonable when 
studying relationships between landscape features and 
precipitation. 

The indicator value of landscape characteristics at 
the stations and surroundings (local landscape variables) 
was compared in Jaagus et al. (2010), but not applied 
for map production. We suppose that at least a some-
what more detailed deduction of the spatial distribution 
of precipitation is possible by involving local landscape 
variables in interpolative mapping. This investigation is 
an extension of the above-mentioned study; therefore 
the observation data and the predictors are mainly the 
same. 

Local landscape variables are involved as explanatory 
variables in statistical models and as the characteristics 
of every location where a model is applied for map 
generation. That is, first, statistical relationships between 
local landscape variables and precipitation have to be 
modelled. Then estimated values are calculated from the 
model at every location (grid cell) of the study area. 
Many methods have been developed to model statistical 
relationships. Only methods enabling the prediction of a 
continuous numerical variable using a large number of 
categorical and continuous explanatory variables, pre-
suming the relationship is not multi-dimensionally linear 
or any other simple solution, are applicable in the present 
task of modelling mean precipitation. The task fits several 
data mining methods at the boundary of statistical 
modelling and machine learning. There are no generally 
accepted rules for how to choose the presumably most 
effective technique from the expanding diversity of data 
mining methods. Therefore, methodological comparisons 
are still urgent. 

The aims of this study were: (1) to generate more 
detailed maps of mean precipitation in the Baltic countries 
than is possible from pure interpolation, (2) to compare 

the effectiveness of methods for interpolative modelling, 
(3) to specify the mean precipitation values over the 
territory of the Baltic countries. 
 
 
DATA 
Precipitation  data 
 
Seasonal (spring � MAM, summer � JJA, autumn � SON, 
winter � DJF) and annual precipitation data measured 
at meteorological stations in the years 1966�2005 were 
obtained from the national weather services of all three 
Baltic countries (Estonian Meteorological and Hydro-
logical Institute; Latvian Environment, Geology and 
Meteorology Centre; Lithuanian Hydrometeorological 
Service). The precipitation data used in this study 
were collected with the Tretyakov gauge, following the 
general instructions given by the World Meteorological 
Organization (WMO). Winter precipitation in the Baltic 
countries can be liquid as well as solid. Snow and ice 
were melted before precipitation measurements. 

The total number of stations included in this study 
was 245 (101 from Estonia, 62 from Latvia and 82 from 
Lithuania). The training data set of 123 stations used to 
calibrate models for interpolative mapping is the same 
as described in Jaagus et al. (2010). This was selected 
following the criterion of complete data coverage; that 
is the absence of gaps in time series. Single gaps existed 
only at some stations. The maximum amount of gaps 
allowed for the training data set was two years or 5% 
(Jaagus et al. 2010). Precipitation data from additional 
122 stations not included in the training set were used 
as an independent data set to validate the results 
obtained with different interpolation methods (Fig. 1). 
The validation data set consists of information from the 
stations that did not fulfil the criteria for the training 
data set. The validation set was separated only to 
compare methods. The predictive maps were calculated, 
using observations from all 245 stations as training data 
for the models derived with the most effective methods. 

The precipitation data included in the validation data 
set have observation gaps. The selected stations did not 
function during the entire study period (1966�2005). 
The criterion for using the data from each station was 15 
years of observations as a minimum. The gaps in the 
observation series were filled with data from two control 
stations from the training set. The control stations were 
selected to be the nearest stations located in opposite 
directions from the station with observation gaps. 

The mean monthly precipitation for the stations with 
gaps was calculated in the following steps. First, the 
mean precipitation values of the two control stations 
were found for every month during 1966�2005. Then,  
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the ratios of the monthly mean precipitation between the 
test station and the control stations were calculated for 
the period of simultaneous observations. Finally, the 
monthly mean ratios for that period were calculated and 
multiplied by the monthly mean precipitation values of 
the control stations for 1966�2005. We assumed that 
the ratio between monthly precipitation at a test station 
and at control stations observed during the period of 
simultaneous observations persisted also during the entire 
observation period of 1966�2005. 

 
Landscape  variables 
 
The local landscape variables used as explanatory 
variables in the interpolative modelling were the same 
as in Jaagus et al. (2010): Cartesian coordinates of the 
Transverse Mercator projection (central meridian 24°E) 
in the west�east (longitude) and the south�north direction 
(latitude); 26 variables to characterize land cover diversity 
and the dominant land cover class; 10 variables to 
describe land surface elevation; 7 variables to describe 

 

 
 

Fig. 1. Location of the study area, with learning and validation stations. EE, Estonia; LV, Latvia; LT, Lithuania. 
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the distance from the sea coast and the share of water 
bodies and 6 describe the share of the forested area. 

Two data layers were used to derive the landscape 
features (excluding the coordinates): the Coordination 
of Information on the Environment (Corine) land cover 
2000 database (European Commission) and the global 
Shuttle Radar Topography Mission (SRTM) surface 
elevation model (U.S. National Aeronautics and Space 
Administration) (Fig. 2). Both data layers follow a 
constant methodology, cover the entire study area and 
have a suitable level of precision for predictive mapping 
at a regional scale. 

The spatial indices calculated from the data layers 
included the number of categories, the index of dominance, 
the share of a particular category, the modal category 
and the reverse distance weighted modal category in the 
case of land cover. The mean value, aspect and quotient 
of variation (QV) were derived from the elevation model. 
The slope angle was not applied because the SRTM 
elevation model is not precise in details, and because the 
slope of the land surface is predominantly close to zero 
in the Baltic countries, since the differences in elevation 
are modest (Fig. 2A). 

Coordinates in SN and WE directions are needed to 
describe spatial trends in models. In similarity-based 
estimations, the spatially closer exemplar stations are 
more similar regarding predictors SN and WE, and 
therefore have more impact on the estimated value. In 
addition, the reverse distance weighted mean precipitation 
amount of the predictable period, calculated using data 
from the other stations within a radius of 75 km, was 
added to the explanatory variables. The radius of 75 km 
was preferred as the result of comparing the fit of models, 
which alternatively involved precipitation data from 
other stations within radii of 30, 50, 75, 100 and 200 km. 
The application of larger radii would dim local variability 
of precipitation. Smaller radii would cause missing 
value problems for some modelling methods, since 
not all stations in the training data set have a nearest 
neighbouring station within the given radius. There are 
six stations missing a neighbour within 50 km in the 
training data set, but all stations have a nearest neighbour 
within 75 km (Fig. 3). 

The basic data layers, maps of estimated values, 
similarity maps and models are all available 
at http://www.geo.ut.ee/Natuurkaart/BalticPrecipitation. 
Tabular source data are available from the authors. 
 
 
METHODS 
Data  transformations  and  experiment  structure 
 
The main stages of the study were: (1) calculating local 
landscape variables and the reverse distance weighted 

 
 
Fig. 3. Frequency of the number of neighbouring stations 
around observation stations in the learning set (123) and in all 
data (245). 
 
 
mean precipitation at stations, (2) comparing the reliability 
of different models calibrated on the training set of 
stations, using the independent validation set of stations, 
(3) calibrating the most effective models according  
to stage two, using all observation data (training and 
validation data merged together), (4) generating predictive 
maps, using the most effective models, (5) deriving the 
estimated mean values for the countries from calculated 
values in the predictive maps. 

The reverse distance weighted mean precipitation 
and the spatial indices used as local landscape variables 
were extracted from raster format data layers at the 
precise location of the station, within radii of 1, 10 and 
20 km, and in the southwest sector of the circular kernel 
with the LSTATS software (Remm 2005; Tamm et al. 
2010; http://www.geo.ut.ee/LSTATS). 

A software system for the calculation of spatial indices, 
machine learning and similarity-based predictions � 
Constud (Remm & Remm 2008) and the following 
advanced statistical methods from the Statsoft Statistica 9 
Data Miner (DM) package were compared: multivariate 
adaptive regression splines (MARS), boosted regression 
trees (BRT), random forest (RF) regression, support 
vector machine (SVM), k-nearest neighbours (KNN) 
and Statistica artificial neural networks (SANN). All 
these methods can combine multiple categorical and 
numeric variables in one analysis. Default values for  
the initial parameters (the choice of which depends on  
the method) were used for all methods (Appendix).  
The default options may not give the best models  
for all occasions, but are used as a standard to avoid  
a subjective bias in favour of one method or another  
when manipulating with the practically infinite number of 
possible combinations of parameter values. We assumed 
that software developers have selected default options 
close to optimal for most occasions. 

Most data mining algorithms in Statistica DM are 
sensitive to the missing values of explanatory variables � 
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the predicted value is not returned if any of these variables 
are unknown. Surface elevation in the vicinity of seven 
stations in the training data is predominantly zero or 
predominantly flat. The QV calculated from surface 
values is undetermined on the first, and slope aspect on 
the second occasion. To include these stations in all 
comparable DM methods, gaps in the QV and aspect 
values were replaced with zeros. 

Input from and output to binary raster format is 
integrated to Constud but not to Statistica DM. There-
fore, a simple user interface was written in Microsoft 
Visual Studio 2008 to deploy the DM models to raster 
format data layers. 

The fit of calculated and observed values (objective 
function) was measured as the relative root mean squared 
error (relative RMSE) for all methods. The training and 
validation fit were compared using over-fitting ratio, 
which was calculated as follows: the relative RMSE in 
the validation sample divided by the relative RMSE in 
the training sample. Over-fitting occurs when a model 
or a learning system describes noise instead of the 
underlying relationship. In iterative learning, over-fitting 
starts when further learning may improve the prediction 
fit according to training data, but not in an independent 
data set used for validation. 

The spatial mean values of precipitation for the three 
Baltic countries were calculated as: (1) the average 
measured at observation stations, (2) the reverse distance 
weighted mean of precipitation at stations within the 
radius of 75 km calculated for a 1 km grid covering the 
study area, (3) similarity-based estimations calculated 
for the 1 km grid using Constud and (4) estimations 
calculated for the 1 km grid with the best DM method 
selected according to the validation fit. 

Interpolations and predictive models for annual data 
and for the four seasons were calculated as separate 
models. Therefore, the sum of estimated precipitation 
for the seasons is not equal to the estimated annual value 
of precipitation. 
 
Data  mining  methods 
 
Data mining (DM) methods compared in this study are 
implementations of algorithms, the details of which are 
described in textbooks (e.g. Maimon & Rokach 2005; 
Witton & Frank 2005; Nisbet et al. 2009) and in 
publications cited at each method. Constud is a less 
known software system and therefore is described in 
more detail below. 

Multivariate adaptive regression splines (MARS) is 
a nonparametric procedure that makes no assumption 
about the underlying functional relationship between the 
dependent and independent variables, and can handle 
both categorical and continuous variables (whether 

response or predictors). This method partitions the input 
space into regions, each with its own regression or 
classification model, and can be considered as a 
generalization of regression trees where the abrupt 
binary splits are replaced by smooth basis functions. 
Overfitting in MARS is restricted by parameters setting 
limits to the complexity of the model. For more details 
see Hastie et al. (2009). 

Boosting is an iterative procedure used to adaptively 
change the weights of training data so that the classifier 
will focus on cases that are hard to classify (Tan et al. 
2006). The boosted trees algorithm in Statistica DM 
generates iterative classification or regression models and 
assigns weights to the observations according to the 
accuracy of the prediction. Then the classifier is applied 
again to the weighted data. As a result, each consecutive 
classifier is more effective in predicting values for 
observations that were not well predicted by the previous 
classifiers. Boosted trees have been successful for 
presence/absence data, as in the case of modelling species 
distribution by using climatological data (Elith et al. 
2008) and in epidemiology (Remm & Remm 2010). 

A random forest (RF) of decision trees consists of  
a collection of simple tree predictors, which are used  
to vote for the most popular class, or their responses  
are averaged to obtain an estimate of the numerically 
dependent variable. The response of each tree depends 
on a set of predictor values chosen independently for all 
trees in the forest as subsets (with replacement) of the 
predictor values of the original data. Random forest has 
been used in climatology for the prediction of transitions 
between weather regimes (Kondrashov et al. 2007). 

Support vector machine (SVM) was initially developed 
as a classification method based on a set of points 
(support vectors) in the feature space that determines the 
boundary between different class membership areas. It 
can also be used as a nonparametric regression technique, 
where the complexity of the regression curve is controlled 
via the number of support vectors and not by the 
dimensionality of the feature space. This method has 
been used for climate change predictions (Tripathi et al. 
2006) and for estimating surface temperature from remote 
sensing data (Moser & Serpico 2009). 

The method k-nearest neighbours (KNN) is a 
similarity-based technique that in Statistica, unlike 
Constud, does not use iterative training. In KNN 
predictions are based on a set of prototype examples 
(exemplars, etalon observations) that are used to estimate 
values of the predictable variable based on the majority 
vote (for classification tasks) or averaging (for regression) 
over a set of k nearest prototypes. The KNN method 
was used for the interpolation of rainfall by Ali (1998). 

An artificial neural network (ANN) consists of layers 
of interconnected nodes with a simple function connecting 
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inputs, weights and outputs. The weights are given 
initial settings and then iteratively adjusted according  
to errors of the predicted values. When the network is 
executed, the input variable values are placed in the 
input nodes, after that the hidden and output layer nodes 
are executed in their sequential order. Each of them 
calculates its activation value, using the weighted sum 
of the outputs of the nodes in the preceding layer. When 
the entire network has been executed, the nodes of the 
output layer act as the output for the entire network.  
The ANN method has been used in climatology for 
estimating evapo-transpiration (Zanetti et al. 2007), for 
the classification of rainfall variability (Michaelides et al. 
2001), for downscaling daily precipitation extremes and 
variability (Dibike & Coulibaly 2006), for ground rainfall 
estimation from radar measurements (Liu et al. 2001) 
and for the reconstruction of precipitation time series 
(Lucio et al. 2007). 
 
Constud 
 
The software system Constud contains options for locally 
calculating indices of spatial patterns, iterative fitting 
(learning) of weights and for calculating similarity-
based estimations output to a data table or to a raster 
map. The learning in Constud includes selection and 
iterative shifting of weights for features and observations 
according to the results of the similarity-based estimations 
in samples of observations and explanatory variables. 

Constud estimates are similarity-based like the KNN 
estimates. Similarity between cases is calculated in 
Constud as the weighted mean similarity calculated 
from partial similarities. Every predictor has a weight, 
which is gradually fitted in iterations, and every predictor 
returns a partial similarity. In the case of a nominal 
predictor and matching classes, the partial similarity 
equals one. If the classes differ and self-similarities of 
classes are not applied (like in this study), the partial 
similarity equals zero. When self-similarity tables are 
used, partial similarity equals the similarity between the 
classes as set in self-similarity tables. 

In the case of a numerical predictor ( ),f  the 
difference ( )D  between its values ( fT  and )fE  for  
an exemplar ( )E  and an observation ( )T  is calculated 
according to formula (1): 
 

,
2

f f

E f

T E
D

w w

−
=   (1) 

 
where Ew  is the weight of exemplar E  and fw  is the 
weight of the feature .f  If the difference is greater than 
one, partial similarity is assigned a zero value. Other-
wise, partial similarity is calculated by subtracting D  
from one. 

In the case of spatial data, a distance-dependent 
correction parameter for reducing the effect of spatial 
autocorrelation is used. This parameter regulates the 
amount of possible reciprocal prediction between 
observations at a close distance. The similarity between 
observations is decreased in proportion to inverse distance 
between observations. The amount of decrease is regulated 
by the distance correction value. If the distance between 
observations remains below the correction value, similarity 
between them is set to zero. If the distance equals  
the double correction value, similarity will be decreased 
by 50%. As a result, the set of exemplars where the 
observations are spatially more dispersed is preferred 
(Linder et al. 2010). 

Machine learning in Constud includes the automated 
selection and iterative weighting of features, observations 
and the sum of similarity sought for a decision. Learning 
iterations in Constud consist of five stages in a given 
order: (1) selection of features, (2) weighting of features, 
(3) selection of exemplars, (4) weighting of exemplars, 
(5) changing the actuality of features and cases. 

The selection of features in Constud involves the 
inclusion of features in the order of usefulness one by 
one while gradually decreasing feature weights. The best 
feature set enters the new weighting iteration during 
which the feature weights are repeatedly changed one by 
one to improve the goodness of fit. Optionally, in addition 
to the change in feature weights, the effect of changing the 
sum of similarity is tested. The set of changed weights and 
the amount of similarity that gave the best matching 
predictions are used in the next iteration. 

The best set of feature weights is used for the selection 
and weighting of cases. Before the selection of exemplars, 
goodness of fit between estimations and training data 
using all cases as exemplars is calculated. Thereafter the 
last observation is removed and the goodness of fit is 
recalculated. If the goodness of fit has decreased, the 
removed case will be used as an exemplar, otherwise the 
case will not be included in the set of exemplars. 

In the feature weighting stage three alternative changes 
of exemplar weight are compared: (1) an increase, 
(2) weight left unchanged and (3) a decrease in weight. 
The initial magnitude of the weight change is 0.5; this is 
divided by 2 in the following iterations. 

The actuality value is raised for a feature/exemplar that 
has been selected for the learning sample and has turned 
out to be useful (the prediction accuracy has increased). 
The actuality is decreased when the feature/exemplar was 
in the sample, but was not necessary for the prediction. 
Actuality values range between 1 and 200 and affect the 
sampling of features and exemplars. As the minimal 
possible actuality value is 1, no feature/case is totally 
discounted. After approximately ten learning iterations, 
actualities of features and exemplars are normalized so that 
the mean actuality of features and exemplars equals 100. 
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The speed of change of actualities is tuned by the 
factor of credulousness that has an integer value between 
1 and 6. When the learning process is set to be more 
credulous, the alteration of actualities at every iteration 
is faster. When a case has been selected as an exemplar, 
its actuality is increased by the value of case weight 
multiplied by the factor of credulousness. If the case is 
in the training sample but appears to be useless as an 
exemplar, its actuality is decreased by the ratio of the 
sum of exemplar weights to the number of cases not 
being used as exemplars. Due to this, the total increase 
and decrease of actualities is balanced. 

The fitting of features results in weights given to the 
explanatory variables. Similarity in one aspect does not 
mean similarity in other aspects; that is, not all recorded 
characteristics of a site have the same indicator value. 
As a rule, most features are not needed for the prediction 
of a dependent variable if the dataset contains a large 
number of interrelated explanatory variables � these 
features are given a zero weight.  

The result of the fitting of cases is also weights. Only 
observations having a weight above zero are used as 
exemplars for similarity-based predictions. The number 
of exemplars used in estimations is fitted during learning 
in Constud as the sum of similarity sought for a decision. 
The initial amount of similarity for decisions was set to 
five, to start from more generalizing predictive sets. The 
learning process optimized this value for the annual and 
seasonal data sets to 1.2�4.1. 

The final estimate is given in Constud as the average 
of the values of the dependent variable attributed to the 
most similar exemplars weighted by the similarity 
between a new location and exemplar locations. More 
technological details, the schemes of learning and map 
generation in Constud are given in earlier publications 
(Remm & Remm 2008, 2009; Remm et al. 2009) and on 
the Constud webpage: http://www.geo.ut.ee/CONSTUD. 

In addition to the estimated values, the mean level  
of similarity between observations and exemplars used for 
the prediction is recorded by Constud. Lower values mark 
relatively peculiar cases or sites, which are insufficiently 
represented in the training data. The most similar 
exemplars used to calculate similarity-based predictions at 
these locations are actually not very similar to the site. 
Mean similarity does not represent similarity to the most 
similar exemplar, but the mean level of similarity between 
the exemplar sites used to calculate the prediction and  
that particular site since similarity-based predictions 
are usually calculated by using more than one exemplar. 
 
 
RESULTS 
Fit  of  models 
 
Although SVM models gave the most exact estimations 
in the training data for annual and winter precipitation, 
Constud models were more reliable according to the 
average RMSE over annual and seasonal data (Table 1). 

 
 

Table 1. Relative RMSE (%) of the predictions in the training data and in the independent test data set, and 
the overfitting ratio. The best validation results separately for the average of all models (annual, DJF, 
MAM, JJA, SON) and as the best of the DM methods are in bold. See pp. 173 and 175 for abbreviations 

 
 Constud MARS BRT RF SVM KNN SANN 

Training        
Annual 4.05 5.26 6.33 7.44 3.45 4.78 4.48 
DJF 7.32 9.09 9.53 13.73 7.04 9.15 8.74 
MAM 4.60 5.25 10.63 12.08 7.99 4.23 10.42 
JJA 2.76 3.59 7.02 6.38 3.05 4.08 2.88 
SON 4.07 9.39 7.92 17.66 17.53 18.52 4.38 
Average 4.56 6.52 8.29 11.46 7.81 8.15 6.18 

Validation        
Annual 8.34 8.73 9.60 11.02 10.56 12.12 20.52 
DJF 11.01 13.69 14.73 15.18 14.12 17.55 30.49 
MAM 10.72 10.89 17.14 9.35 9.54 11.19 35.11 
JJA 7.58 7.81 12.05 8.12 7.73 8.47 9.45 
SON 10.37 13.00 13.55 19.29 19.18 19.97 15.97 
Average 9.60 10.83 13.42 12.59 12.23 13.86 22.31 

Overfitting ratio        
Annual 2.06 1.66 1.52 1.48 3.07 2.54 4.58 
DJF 1.50 1.51 1.55 1.11 2.00 1.92 3.49 
MAM 2.33 2.07 1.61 0.77 1.19 2.64 3.37 
JJA 2.74 2.18 1.72 1.27 2.54 2.08 3.28 
SON 2.55 1.39 1.71 1.09 1.09 1.08 3.65 
Average 2.24 1.76 1.62 1.15 1.98 2.05 3.67 
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Similarity-based reasoning in Constud outperformed 
other methods also according to the validation data, 
except for spring. MARS was the next most effective 
method according to the prediction fit in the validation 
data. As the average over all methods, the long-term 
mean precipitation in spring and summer was easier to 
model spatially than during autumn and winter when the 
RMSE was larger. 

The RF method was remarkably resistant to over-
fitting; SANN was the extreme opposite, at least according 
to these data. Both similarity-based methods, KNN and 
Constud, have the next highest risk to yield deceptively 
effective overfitted estimations. On average, models for 
annual data gave more overfitted results than models 
estimating seasonal precipitation values. 
 
Maps  of  estimated  precipitation  values 
 
The maps of estimated mean precipitation in the Baltic 
countries were generated by using methods according to 
the validation fit, employing (1) reverse distance weighted 
interpolation, (2) Constud as the best of all compared 
methods on average and (3) the most reliable of DM 
methods. As a rule, the most effective DM method was 
MARS, except for in spring when the RF model out-
performed all others, and in summer when SVM gave 
more reliable predictions. As expected, the modelled 
maps have more spatial details than the interpolation 
result (Figs 4, 5). 

At the general level, all three methods (interpolation, 
Constud, MARS) result in similar maps for annual 
precipitation, which is highest on the western coast of 
Latvia and Lithuania (Fig. 4). This can be explained by 
the windward coastal effect, which is also persistent in 
western Estonia and in Latvia east of the Gulf of Riga. 
The area with the lowest precipitation is located east of 
these belts of higher precipitation on the leeward side from 
the sea. In the eastern parts of the Baltic countries, topo-
graphy is the main factor determining mean precipitation. 
Higher precipitation is observed in the uplands and 
especially on their windward (western and southwestern) 
sides. Lower precipitation is typical for leeward sides of 
uplands and for lowlands. 

The differences between the maps in Fig. 4A�C can 
be seen in the details � Constud and MARS highlight 
and delineate the effect of the Otepää, Haanja-Alūksne 
and Vidzeme uplands, while MARS probably overestimates 
the annual precipitation in Estonia and Latvia (Fig. 4B). 
The Constud map also indicates a higher level of 
precipitation in more forested regions than according to 
simple interpolation. The actual amount of precipitation 
in the central part of Hiiumaa and Saaremaa islands  
is not well known � the modelling methods indicate a 
potentially much greater amount of precipitation than 

measured at the stations, which are all quite close to the 
sea. 

The mean precipitation over the larger lakes, Peipsi 
and Võrtsjärv, is unknown. The precipitation values 
for the lakes are inferred from data obtained at stations 
located near the coasts of these water bodies. The models 
take into account the percentage of water bodies in the 
neighbourhood. Therefore, the precipitation amounts 
estimated for lakes Peipsi and Võrtsjärv are similar to 
the estimates for the coastal zone of the sea and for 
small islands. The uniqueness of Lake Peipsi is also 
presented on the similarity map (Fig. 4D). 

The actual amount of precipitation is also unclear on 
the southern bank of the Daugava River. There the 
result calculated with the use of local landscape variables 
is higher than the precipitation measured at nearby 
stations. 

A significantly higher amount of precipitation close 
to the sea and a lower amount in the eastern regions is 
especially characteristic of the winter season. Modelled 
winter precipitation is spatially more detailed than the 
result of the interpolation. The greatest difference appears 
on the western and southern coastal regions of the Gulf 
of Riga, where the modelled values (Fig. 5B, C) are 
much higher than the interpolated ones (Fig. 5A). The 
lower actual value could be caused by ice cover, usually 
occurring in the Gulf of Riga, but absent in the Baltic 
Proper in winter. Models were not able to include the 
effect of ice because the distribution of ice cover was 
not among the explanatory variables. 

The spatial variability of precipitation in spring is 
relatively low (Fig. 5D�F) and seems to coincide with 
air temperature. For example, lower temperatures and 
lower precipitation are observed in the coastal regions 
of Estonia. More precipitation is estimated for the more 
continental southern and eastern parts of the study area, 
which are the warmest in spring. Constud estimates that 
highlight high levels of precipitation near the eastern 
coast of the Gulf of Riga are deduced from the high 
levels of precipitation recorded at the stations Lagaste 
(208 mm) and Limba�i (218 mm) during MAM. The 
area of high precipitation close to the sea is extrapolated 
northwards up to Pärnu and to a more southern region 
on the Lithuanian coast, which is not supported by the 
observations (Fig. 5D, E). 

According to validation data, the most reliable 
modelling method for MAM precipitation was RF, which 
gave the most conservative estimations � the estimated 
values are close to the mean value over the entire study 
area (Fig. 5F). Attempts to use any other method for 
modelling MAM precipitation were less successful 
according to the validation data. The only tendency high-
lighted by the estimates is the higher spring precipitation 
in eastern Latvia, which is deduced from relatively high  
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observed precipitation at the stations Dagda (182 mm) 
and Gri�kāni (174 mm). 

Summer is the season of the highest precipitation  
in the Baltic countries except in the western coastal 
region of Lithuania and Latvia, where the maximum 
precipitation is observed in autumn. Less precipitation  
is depicted in the coastal zone and higher levels in the 
hinterland. Estimations for eastern Latvia are relatively 
low and spatially unstable (Fig. 5G�I). The low mean 
precipitation measured at Gri�kāni (154 mm) and Dagda 
(156 mm) was extrapolated to a wider region because  
of the low spatial density of observations (Fig. 5G). 
Modelling methods formally related low values in these 
two stations to the land cover category pastures, which 
is the dominant class in this region according to the 
Corine land cover map. 

A somewhat higher mean precipitation indicated in 
the uplands in summer is visible both on the interpolated 
and Constud maps (Fig. 5G, H). The differences are 
mainly in estimates for Lake Peipsi and for the inner 
areas of Saaremaa and Hiiumaa islands � there should  
be much more rain in summer according to estimates 
involving landscape characteristics compared to simple 
interpolation. The actual mean precipitation level on 
larger water bodies cannot be directly verified from 
existing observation data. The low mean precipitation 
estimate for JJA off the coast of Lake Peipsi is concluded 
from the similar share of water bodies in the vicinity 
attributed to the stations on the seacoast. 

The pattern of alternative estimations for autumn 
precipitation is quite similar. The area of higher 
precipitation is located in the western and northwestern 
parts of the Baltic countries, while the region of lower 
precipitation is situated in the southeastern and eastern 
parts (Fig. 5J�L). According to Constud estimates, the 
high precipitation area in western Lithuania continues 
along the seacoast in Latvia. The maximum is 10�20 km 
inland from the coast. Precipitation is somewhat higher 
in the eastern parts of Saaremaa and Hiiumaa islands 
than in the western parts. 
 
Similarity  maps  and  prediction  residuals 
 
Both prediction residuals and similarity maps calculated 
with Constud indicate reliability of estimations. Similarity 
maps show areas that do not have sufficient similar 
exemplar stations in the training data set. Low-similarity 
areas either lack stations with similar surrounding land-
scape or have atypical observation results. Additional 
stations are needed to represent these low-similarity 
regions. Absolute similarity cannot be seen anywhere 
since more than one exemplar was used in predictions. 

The similarity map for annual data primarily indicates 
the uniqueness of large lakes Peipsi and Võrtsjärv (Fig. 4D). 

The average similarity between the most similar exemplar 
stations and the estimated location in the central part  
of Lake Peipsi is about 65�75%, while being mostly 
between 80% and 90% in other parts of the study area. 
Eastern Latvia and the diverse landscapes of the Baltic 
Uplands in eastern Lithuania should be more densely 
covered by meteorological stations. 

The RF model generally overestimates the mean 
amount of precipitation in northern and western Estonia 
in spring. Columns of residuals for the Lagaste and 
Limba�i stations in northern Latvia for MAM stand in 
one north�south line, exaggerating each other (Fig. 6C, H). 
The values observed in both stations are notably 
higher than both RF and Constud estimations and also 
higher than the values observed in the neighbouring 
stations. The SVM model tends to underestimate the 
amount of precipitation in most stations in hilly southern 
Estonia. The annual, winter and autumn MARS models 
overestimate precipitation levels in the western and 
northern sides of the study area, except at stations on 
small islands and at the westernmost end of the Kõpu 
Peninsula. 

Prediction residuals of Constud estimations have 
less spatial trends than estimations from the DM models 
(Fig. 6). Constud estimations have a marked tendency to 
smooth down extreme values in observations, since the 
estimated values are calculated as weighted averages 
from values of more than one exemplar. Although the 
estimated amount of precipitation in western Lithuania 
and western Latvia is the highest in the study area in 
autumn, winter and as the total annual, the observed 
values in this region are more often higher than lower, 
compared to the estimated values (Fig. 6A, B, E). 
 
Predictive  sets  of  variables 
 
The predictive sets of explanatory variables selected by 
learning in Constud contain 2�8 landscape features, SN 
or WE coordinates (except MAM and JJA) and the 
reverse distance weighted amount of precipitation at 
stations within a radius of 75 km during the estimated 
period (except DJF) (Table 2). The indicator value of a 
single variable is not the same as in combination with 
other variables. In Jaagus et al. (2010) we compared 
variables one by one; here a predictive set of variables is 
given. 

The interpolated amount of precipitation within a 
radius of 75 km during the estimated period was merely 
one among other variables used for similarity-based 
mapping. In most cases it is not even the weightiest one 
(except MAM, when Constud failed in comparison with 
RF, SVM and BRT). The best model according to the 
validation data for MAM was RF, which involved all 
explanatory variables. 
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Mean  values  of  precipitation  for  the  Baltic  
countries 
 
The spatial mean values of precipitation for the three 
Baltic countries were calculated with different methods. 
The annual mean in Lithuania calculated as the average 
of observations (685 mm) is higher than the estimates 
from the models (667�681 mm) (Table 3). The difference 
is pronounced mainly in autumn and is likely caused  
by the low density of stations in the central part of 
Lithuania, which is an area with the lowest precipitation 
and where fields dominate on a flat terrain. The density 
of stations is higher in the coastal region of Lithuania 
where the amount of precipitation is the highest in the 
Baltic countries. 

The situation is opposite in Estonia. Regions of 
lower precipitation are more densely covered by stations, 
while upland regions and forested areas with higher 
precipitation have fewer stations. All methods of spatial 
averaging indicate a higher mean precipitation for 
Estonia (687�712 mm) than the mean of the stations 
(681 mm). 

The precipitation estimations from different methods 
are unstable especially in eastern Latvia and on the 
eastern coast of the Gulf of Riga (Fig. 5). In spite of a 
high spatial variability of estimates, the annual mean 

precipitation for Latvia according to the mean of the 
stations (694 mm), interpolation (690 mm) and Constud 
(697 mm) is similar. The MARS model yielded a higher 
estimate (721 mm). 
 
 
DISCUSSION 
 
According to Galvonaitė et al. (2007), the mean annual 
precipitation on the basis of the mean of stations in 
Lithuania is 675 mm, which is nearly identical to the 
total from the distance weighted interpolation from our 
data. The mean precipitation in Latvia has previously 
been estimated to be 703 mm (Ziverts 2004), which  
is more than the mean of the measurements and 
interpolations from station data available to us, and 
more than estimations obtained by using landscape 
variables and similarity-based reasoning in Constud. A 
previously published long-term mean annual precipitation 
value for Estonia is 669 mm (Jaagus 1999), which is 
notably less than indicated by the results of this study 
(Table 3). 

Recent maps of the mean precipitation in the Baltic 
countries are basically similar to previous isoline maps 
(Jaagus & Tarand 1988; Jaagus 1999; Jaagus et al. 
2010), but much more detailed. When comparing the  

Table 2. Explanatory variables selected by machine learning in Constud for the predictive set of features used for calculating 
maps. Variables are in descending order according to their weight (w) 
 

Annual w DJF w MAM w JJA w SON w 

dw-mode_10sw 1.64 WE 1.61 MAM 75 1.95 mode_20 1.28 dom_10 1.68 
annual 75 1.34 SN 1.50 dw-mode_20sw 1.84 water_10 1.14 WE 1.58 
forest_10 1.13 forest_10 0.85 water_20 1.34 JJA 75 0.93 SON 75 1.40 
elev_10 1.04 d_coast 0.03 dw-mode_1sw 1.14 dw-mode_20sw 0.66 dw-mode20 1.03 
d_coast 1.00   water_10 1.13   SN 0.90 
WE 0.96   dw-mode_10sw 0.40   water_10 0.90 
mode_10sw 0.96   mode_20 0.11   mode_20 0.66 
water_10 0.87   forest_10sw 0.09   dom_20sw 0.55 
dom_20 0.74       forest_10 0.29 
forest_10sw 0.30         

�������� 
Abbreviations: d_coast, distance to sea coast; dom_10, index of dominance calculated from the coverage of Corine land cover 
units within 10 km; dom_20, index of dominance within 20 km; dom_20sw, index of dominance within 20 km in the SW 
direction; forest_10, share of forest within 10 km according to the Corine land cover map; forest_10sw, share of forest within 
10 km in the SW direction; water_10, share of water bodies within 10 km; water_20, share of water bodies within 20 km; 
elev_10, mean elevation within 10 km; mode_20, Corine land cover mode within 20 km; mode_10sw, land cover mode within 
10 km in the SW direction; dw-mode_1sw, reverse distance weighted land cover mode within 1 km in the SW direction; 
dw-mode_10sw, reverse distance weighted land cover mode within 10 km in the SW direction; dw-mode_20sw, reverse 
distance weighted land cover mode within 20 km in the SW direction; WE, west�east Cartesian coordinate; SN, south�north 
Cartesian coordinate; annual 75, reverse distance weighted annual precipitation in stations within 75 km; MAM 75, reverse 
distance weighted precipitation in stations within 75 km in March�April�May; JJA 75, reverse distance weighted precipitation in 
stations within 75 km in June�July�August; SON 75, reverse distance weighted precipitation in stations within 75 km in 
September�October�November; DJF, winter; MAM, spring; JJA, summer; SON, autumn. 
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Table 3. Spatial mean precipitation (mm) in Estonia, Latvia 
and Lithuania according to observations, reverse distance 
weighted mean (RDW) interpolation, maps calculated in 
Constud and the DM method according to validation fit. See 
pp. 173 and 175 for abbreviations 
 

 Estonia 
101 stations 

Latvia 
62 stations 

Lithuania
82 stations 

Annual     
Mean of stations 681 694 685 
RDW 687 690 676 
Constud 691 697 667 
MARS 712 721 681 

DJF     
Mean of stations 137 141 139 
RDW 138 140 136 
Constud 139 143 137 
MARS 142 143 129 

MAM     
Mean of stations 117 130 131 
RDW 120 133 132 
Constud 119 130 128 
RF 124 128 128 

JJA    
Mean of stations 222 218 223 
RDW 224 217 223 
Constud 226 224 221 
SVM 224 224 225 

SON     
Mean of stations 206 205 191 
RDW 207 198 185 
Constud 206 196 184 
MARS 218 209 189 

 
 

maps of annual mean precipitation in Estonia, created 
using four landscape factors (Jaagus & Tarand 1988) 
and by interpolation of station data (Jaagus 1999) with 
the maps in Fig. 4, the highest similarity is revealed in 
the case of the Constud results (Fig. 4C). The largest 
differences between these maps are in the uplands of 
southern Estonia, in the hinterland of northeastern 
Estonia and in the forested belt of central Estonia, 
where the similarity-based estimation indicates higher 
precipitation. 

The largest difference between these and previous 
maps for Lithuania are related to the �emaičiai Upland. 
Traditionally, the dense isohyets are depicted around the 
highest part of this upland (Galvonaitė et al. 2007). 
Similarity-based calculations in Constud locate the 
highest annual precipitation closer to the coast, on  
the western slope of the upland (Fig. 4A). This result 
is deduced from the high observed annual values at  
the exemplar stations: Kartena (838 mm), Vė�aičiai 

(886 mm), Tubausiai (841 mm), Plateliai (867 mm), 
Aizpute (849 mm) and Cīrava (864 mm). 

The low estimated precipitation 150�200 mm in 
eastern Latvia in summer (Fig. 5G) is deduced from 
the low precipitation recorded in the stations Gri�kāni 
(154 mm) and Dagda (156 mm). Temnikova (1958) 
reports a much higher precipitation level for eastern 
Latvia � about 260 mm; figure 3 B in Jaagus et al. (2010) 
indicates about 210 mm. According to the present data, 
these stations belong to a region of continental draught in 
summer, especially in July and August. A denser network 
of stations in this region could provide stronger evidence 
on the spatial and temporal pattern of precipitation, on the 
reliability of the measurements and on the relationships 
with topographical variables. 

Similarity maps, first of all, highlight the absence  
of direct data on lakes Peipsi and Võrtsjärv and the 
scarcity of observations in eastern Latvia in spring and 
summer. The western slope of the �emaičiai Upland  
in Lithuania and coastal areas would need a better 
coverage in summer. The distance to the nearest coast is 
up to 20 km in the centre of Lake Peipsi. A water body 
of this size presumably affects the movement of clouds 
and the amount of precipitation. 

No single model is the best for all data. The results 
of this study are possibly affected by the modest size of 
the training sample. Similarity-based predictive sets in 
Constud tend to be overfitted if the number of training 
observations is less than 500 (Remm & Remm 2010), 
but this limit is not strict � overfitting depends also on 
the number, internal structure and intercorrelation of 
descriptive features, on the type (boolean, numeric, 
nominal), variability and predictability of the dependent 
variable. The extent of overfitting reduces the reliability 
of most of the compared methods, and therefore the fit 
and reliability of estimations derived with different 
methods could also differ if the number of observation 
stations or the study area were larger. 

Another weakness of the methodological comparison 
in this study, and also in the wider context, lies in the 
large number of initial parameters and all possible 
combinations of the parameters that a user can adjust in 
all of these relatively complicated methods. Therefore, a 
single comparative study is clearly not enough to prove 
the superiority of one or another method. The comparison 
indicates that Constud has some advantages, which may 
be a result of the more automated process of parameter 
optimization for the predictive system compared to the 
DM models in Statsoft Statistica. The development and 
application of data mining methods in climatology is 
directed towards the automation of parameter optimization 
(Moser & Serpico 2009) and to the use of ensemble 
methods. Ensembles, which search for the best solution 
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Fig. 4. Estimated annual precipitation in the Baltic countries in 1966�2005 and observation stations: A, reverse distance weighted
interpolation; B, MARS model; C, Constud model; D, similarity to exemplar stations (larger squares). 
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Fig. 5. Estimated seasonal precipitation in the Baltic countries in 1966�2005 and observation stations: A, DJF interpolated;
B, DJF Constud model; C, DJF MARS model; D, MAM interpolated; E, MAM Constud model; F, MAM RF model; G, JJA
interpolated; H, JJA Constud model; I, JJA SVM model; J, SON interpolated; K, SON Constud model; L, SON MARS model. 
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from many different models in parallel, have come into 
use for both short- and long-term weather forecasting. 
Conceptually, the multi-model approach should be more 
reliable; however, in reality, the superiority of multi-
model predictions is not obvious (Algar et al. 2009; 
Weigel et al. 2009). 

The relative RMSE of precipitation estimations 
obtained with the best method in this study in validation 
data was 7.6�11.0%. This is a better result than the 
simpler regression models applied in some earlier 
investigations (Daly et al. 1994; Goodale et al. 1998; 
Ninyerola et al. 2006). 

Most modelling methods are sensitive to missing 
values of explanatory variables. The effect of missing 
values is not destructive in Constud � similarity is 
calculated using the existing values. The other reason 
why some models cannot yield a reasonable prediction 
is a new category in validation data � a class of a nominal 
explanatory variable that was not represented in the 
training data. Here again, Constud is more robust. The 
main drawbacks of Constud are the complicated and 
strictly fixed database structure needed within this soft-
ware system and the time-expense of machine learning. 
The 2500 learning iterations using 123 observations and 
20 explanatory variables (out of 52) took about 15 hours 
on a 3.4 GHz processor. 

Learning in Constud involves random decisions: 
weights are shifted by a small random value at the 
beginning of each iteration. In addition, the decision is 
random in the situation when more than one learning 
path is equal. As a result, parallel machine-learning 
processes using the same data and initial parameters 
in Constud do not yield identical results. There is  
no guarantee that the predictive set of weights for 
features and exemplars selected yields the most reliable 
estimations. Different sets of features can provide 
approximately equally precise estimations as proven 
by Remm & Remm (2008), especially if the number 
of features is large and intercorrelated features are 
numerous. For example, there are seven features directly 
describing the amount of water bodies in the vicinity 
among the landscape variables used in this study. The 
share of water bodies is indirectly related also to the 
index of dominance, number of classes and the modal 
category of land cover. 

Universally essential landscape factors in Constud 
models were features describing the amount of water 
bodies and the share of forests in the vicinity. The 
modest role of surface elevation among the landscape 
features, selected by iterative weighting in Constud 
compared with other studies (Goodale et al. 1998; 
Ninyerola et al. 2006), can be related to the relatively 
small altitude difference in the Baltic countries. The 

highest land surface point is 318 m above sea level 
and less than 2% of the area is higher than 200 m 
above sea level. Though, in Ireland, where the territory 
above 200 m comprises 13% of the total area, annual 
precipitation increased with elevation at a rate of 
204 mm per 100 m (Goodale et al. 1998). In our 
models, features, such as the coordinates of a location 
and distance weighted precipitation values in the 
neighbourhood, partially replace characteristics of 
elevation and land cover. Following that, the actual 
role of elevation might be larger than indicated by the 
list of predictive features in Table 2. 
 
 
CONCLUSIONS 
 
The inclusion of local landscape variables enables more 
detailed and perhaps reliable interpolation than the 
reverse distance interpolation not including topographical 
variables. 

Similarity-based estimations in the Constud software 
system were more reliable than data mining methods  
in the majority of cases, but not always. Automated 
parameter optimization could improve the output of data 
mining models. Over-fitting is the most serious threat 
in using artificial neural networks, but also in the case 
of similarity-based k-nearest neighbours and Constud 
methods. 

The spatial representativeness of the existing net-
work of observation stations could be better; the 
estimates for eastern Latvia are especially problematic 
because of the low number of stations. The spatial 
average precipitation calculated as the mean value  
of observations probably underestimates the real value 
for the Estonian territory and overestimates it in 
Lithuania. There are fewer stations within larger forested 
areas and uplands than the average density of the 
observation network in Estonia. The western coastal 
region of Lithuania has a denser network of stations 
than central Lithuania. Comparable observations on 
larger inland water bodies are also needed for reliable 
full-cover estimations. 
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APPENDIX 
 
INITIAL  PARAMETERS  OF  THE  MODELS,  SOME  
EXPLANATIONS  AND  COMMENTS 
Common  parameters 
 
Preclassifier � not used 
Type of the predictable variable � numeric 
Training sample size � 123 
Validation sample size � 122 
The number of stations used for calibrating models applied for 

generating maps � 245 
 
Specific  parameters 
Constud 
 
Initial value for the sum of similarity � 5 (a relatively large 

value) 
Subsample size in learning � 124 (subsampling while learning 

is not applied if this parameter is larger than or equal to 
the training sample size) 

Standard deviations of numerical predictors � precalculated 
from all training data (enhances the speed of learning, has 
no effect on results if subsampling is not applied while 
learning; if subsampling is used, the alternative is to calculate 
the SDs of numerical predictors for every subsample) 

Turns of weighting cases � 1 (yields in weights for cases either 
0, 0.5, 1.0 or 1.5) 

Turns of weighting predictors � 20 (the weights for predictors 
and the sum of similarity sought for decision are changed 
in 20 iterations to find out the optimum set of weights) 

Fitting the sum of similarity � true (the sum of similarity sought 
for decision is optimized together with the weights of 
predictors) 

Objective function in learning � RMSE of leave-one-out cross-
validation 

Number of learning iterations � 2000 
Distance-dependent correction � 0.1 m (excludes self-prediction 

while learning) 
Factor of credulousness for cases and predictors � 3 (a medium 

value) 
 
MARS 
 
Maximum number of basis functions � 21 (determines the 

maximum complexity of the model) 
Degree of interactions � 1 (only first-order interactions between 

variables are included) 
Penalty for adding basis functions � 2 (larger values decrease 

the number of basis functions actually applied) 
Threshold � 0.0005 (prevents overfitting) 
Apply pruning � true (controls model complexity) 
Memory limit � 30 MB (maximum data size that can be 

processed) 
 
BRT 
 
Learning rate � 0.1 (weight with which consecutive trees are 

added into the equation) 
Number of additive trees � 200 (the number of trees to be 

computed in boosting steps) 
Subsample proportion � 0.5 (proportion of random observations 

in learning samples) 
Random test data proportion � 0.3 (proportion of random 

observations in test samples) 

Minimum number to stop � 25 (the minimum number of cases 
in a terminal node that allows further splitting) 

Minimum child node size to stop � 1 (the minimum number 
of cases in a terminal node to apply splitting) 

Maximum number of levels � 10 (maximum number of splits) 
Maximum number of nodes � 3 (each consecutive tree consists 

of one root node and two child nodes) 
Seed for random number generation � 1 (is used to select the 

subsamples) 
User defined final model � false (the final model is selected 

automatically) 
 
RF 
 
Number of predictors � 1 (the number of predictors in a simple 

regression tree) 
Number of trees � 200 (the number of simple regression trees 

to be computed in successive forest building steps) 
Subsample proportion � 0.5 (the subsample proportion to  

be used for drawing the bootstrap learning samples for 
consecutive steps) 

Random test data proportion � 0.3 (the proportion of randomly 
chosen observations that will serve as a test sample) 

Minimum number to stop � 25 (the minimum number of cases 
in a terminal node that allows further splitting) 

Minimum child node size to stop � 1 (the minimum number 
of cases in a terminal node to apply splitting) 

Maximum number of levels � 10 (maximum number of splits) 
Maximum number of nodes � 100 (the splitting is stopped if the 

number of nodes exceeds this number) 
Seed for random number generation � 1 (is used to select the 

subsamples for consecutive trees) 
User defined final model � false (the final model is selected 

automatically) 
Cycles to calculate mean error � 10 (specifies a number of cycles 

over which the error rates are monitored for improvement) 
Decrease in training error � 30% (if the rate of improvement 

drops below this level, training is terminated) 
 
SVM 
 
Subsampling � random 
Size of training sample � 75% (the proportion of cases used to 

form the training sample; the remaining cases are used as 
the test sample) 

Seed for random sampling � 1000 (the random generator seed 
for sampling of data into train and test subsets) 

SVM type � regression type 1 (type of the SVM model) 
Capacity � 10 
Epsilon � 0.1 
Nu � 0.5 
Kernel � RBF (Radial Basis Function kernel) 
Degree � 3 
Gamma � 0.2 
Coefficient � 0 
Maximum number of iterations � 1000 (the maximum number of 

iterations that can be applied in training the SVM model) 
Stop at accuracy � 0.001 (training stops when the given level 

of accuracy is reached) 
Cache size � 40 MB (limits memory usage) 
Shrink data � true (shrinks data for computational efficiency) 
Scale inputs � true (linearly scale the inputs within the range  

0 to 1) 
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Scale outputs � true (linearly scale the outputs within the 
range � 1 to 1) 

Apply v-fold cross-validation � false 
 
KNN 
 
Subsampling � random 
Size of example set � 75% (the proportion of cases used as 

examples; the remaining valid cases form the test sample) 
Seed � 1000 (the random generator seed for dividing data into 

the example and test sets) 
Number of nearest neighbours � 1 (the number of exemplars 

involved into a prediction) 
Distance measure � Euclidean (the metric used for measuring 

the distance between two points in the input space) 
Standardize distances � true (values of predictors are standardized 

to make their ranges of values comparable) 
Use weighted average for predictions � false (makes no 

difference if the number of nearest neighbours is 1) 
Apply v-fold cross-validation � false 
Restrict memory usage � false 
 
SANN 
 
Subsampling � random 
Train sample size � 80% (the proportion of cases used to form 

the training sample) 
Test sample size � 20% (the proportion of cases used to form 

the test sample) 
Validation sample size � 0% (the proportion of cases used to 

form the validation sample) 
Seed for sampling � 1000 
Use Multilayer Perception (MLP)  � true 
MLP min. hidden units � 4 (the minimum complexity of the 

MLP network) 
MLP max. hidden units � 13 (the maximum complexity of the 

MLP network) 
Identity activation function: hidden neurons, identity � true 
Identity activation function: hidden neurons, logistic � true 
Identity activation function: hidden neurons, tanh � true 
Identity activation function: hidden neurons, exp � true 
Identity activation function: hidden neurons, sine � false 
Identity activation function: output neurons, identity � true 
Identity activation function: output neurons, logistic � true 
Identity activation function: output neurons, tanh � true 
Identity activation function: output neurons, identity � true 
Identity activation function: output neurons, exp � true 
Identity activation function: output neurons, sine � false 
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Balti  riikide  pikaajalise  keskmise  sademete  hulga  kaardistamine   
maastiku  tunnuste  põhjal 

 
Kalle Remm, Jaak Jaagus, Agrita Briede, Egidijus Rimkus ja Tiiu Kelviste 

 
Ilmajaamades mõõdetud sademete hulgad on iseloomulikud vaid suhteliselt väikesele alale jaama ümbruses, seda eriti 
suvel, kui hoovihma osakaal on suur. Töö eesmärkideks olid: a) maastiku tunnuseid kasutades luua detailsem Eesti, Läti 
ja Leedu sademete kaart, kui seda on võimalik teha lihtsa interpoleerimisega, b) võrrelda erinevate interpoleerimis-
meetodite tõhusust sademete kaardi koostamisel ja c) määrata Balti riikide jaoks pindalaliselt keskmine sademete hulk. 

Sademete ülepinnaliseks kaardistamiseks kasutati 245 meteoroloogiajaamas aastatel 1966�2005 mõõdetud kesk-
mist sademete hulka ja igat kohta ning selle ümbruse maastikku iseloomustavat 51 kohatunnust. Seoseid koha-
tunnuste ja sademete hulga vahel modelleeriti 7 erineva andmekaevandamise meetodi (MARS, BRT, KNN, RF, 
SVM, ANN, Constud) abil. Võrreldes teiste meetoditega (välja arvatud kevadiste sademete hulga hinnangutes), andis 
sarnasusele tuginev hindamine Constud-i tarkvara abil enamasti usaldusväärsemaid tulemusi. Maastiku tunnustest 
olid sademete territoriaalse jaotuse kirjeldamisel olulised kõrgustikke, veekogusid ja ümbruse metsasust iseloo-
mustavad tunnused. 

Kohatunnuseid arvestav sademete ülepinnaline hinnanguline kaardistamine näitas, et vaatlusjaamade andmete 
lihtsal riikide kaupa keskmistamisel saadud hinnang tõenäoliselt ülehindab sademete keskmist hulka Leedus ja 
alahindab seda Eestis. Ülepinnalisel hinnangulisel kaardistamisel saadud tulemused viitavad vaatlusjaamade kesk-
misest suuremale tihedusele Leedu sademeterikkas lääneosas ja keskmisest väiksemale tihedusele Eesti kõrgustikel 
ning metsastes piirkondades. Baltimaade sademete keskmise hulga usaldusväärset kaardistamist piiras ka vaatlus-
jaamade vähesus Ida-Lätis ja nende puudumine suurematel siseveekogudel. 




