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Wiesław Trela 1,* , Ewa Krzemińska 2, Karol Jewuła 3 and Zbigniew Czupyt 2

1 Polish Geological Institute—National Research Institute, Holy Cross Mountains Branch in Kielce, Zgoda 21,
25-953 Kielce, Poland

2 Polish Geological Institute—National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland;
ewa.krzeminska@pgi.gov.pl (E.K.); zbigniew.czupyt@pgi.gov.pl (Z.C.)

3 Institute of Geological Science, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland;
k.jewula@ingpan.krakow.pl

* Correspondence: wieslaw.trela@pgi.gov.pl

Abstract: This report provides oxygen isotopes from apatite of late Middle and Late Ordovician
conodonts from the southern Holy Cross Mountains in south-eastern Poland. It was a unique time
interval characterised by a significant change in the Ordovician climate, tectonic, and ocean chemistry.
In the Middle and early Late Ordovician, the Holy Cross Mountains were located in the mid-latitude
climatic zone at the southwestern periphery of Baltica; therefore, the δ18Oapatite values from this
region provide new data on the 18O/16O budget in the Ordovician seawater reconstructed mainly
from the tropical and subtropical realms. Oxygen isotopes from mixed conodont samples were
measured using the SHRIMP IIe/MC ion microprobe in the Polish Geological Institute in Warsaw.
The δ18Oapatite values range from 16.75‰VSMOW to 20.66‰VSMOW with an average of 18.48‰VSMOW.
The oxygen isotopes from bioapatite of the studied section display an increasing trend, suggesting a
progressive decrease in sea-surface temperature roughly consistent with an overall cooling of the
Ordovician climate. Two distinctive positive excursions of δ18Oapatite have been reported in the upper
Sandbian and middle Katian of the studied section and correlated with cooling events recognised
in Baltica. They are interpreted as an isotope temperature proxy of climate changes triggered by a
growing continental polar ice cap, but increased δ18Oapatite in the late Sandbian contradicts recently
postulated climate warming during that time in subtropical Laurentia.

Keywords: oxygen isotopes; conodonts; Ordovician; palaeotemperature; climate

1. Introduction

The Ordovician period was characterised by a progressive climate change from the
warm (greenhouse) to cold (icehouse) conditions that culminated in a short glacial interval
confined to the Hirnantian [1–7]. The precise time of this climate transition is a matter
of debate in which there are arguments for the formation of the continental polar ice cap
in the early Katian or late Sandbian [8,9], or even in the late Middle Ordovician [10]. It
should be noted that the transition from the Middle to Late Ordovician is characterised
by a major shift in seawater 87Sr/86Sr and δ18O, which is linked with climate and tectonic
changes [11,12]. The scenario of pre-Hirnantian climate cooling and the southern polar
ice sheet formation is supported by positive δ13C excursion in the lower Katian (referred
to as the Guttenberg Carbon Isotope Excursion—GICE) that corresponds to eustatic sea-
level fall (see [13,14] and references therein). A postulated driver of the Late Ordovician
climate cooling includes decreasing pCO2 level ([4,7] and references therein), although the
contribution of volcanic activity is also considered via weathering of fresh volcanic glasses
and high emission of SO2 that increased the planetary albedo [9,15].
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A general trend in Ordovician climate change was recognised by measurements of
δ18O from conodont apatite and brachiopod calcite [5,9,11,16–22]. Conodont bioapatite
is relatively resistant to diagenetic alteration of δ18O and thus facilitates the preservation
of the original temperature signal, and it is widely used to estimate palaeotemperature
(see [5,23–26]). The δ18Oapatite data from conodonts provided by Trotter et al. [5] reveal a
steady cooling trend in the Ordovician climate, including (1) progressive decrease in sea-
surface temperature from the Tremadocian to early Darriwilian; (2) climate stabilisation in
the middle Darriwilian to middle Katian time with seawater temperatures similar to present-
day equatorial regions; and (3) a major cooling since the late Katian. This gradual climate
cooling is considered to be a key factor driving major marine biodiversity culminating
in the Middle Ordovician, referred to as the Great Ordovician Biodiversification Event—
GOBE [5,27]. Numerous papers have concentrated on analyses of δ18Oapatite from the
late Sandbian–Katian time as this period is considered as a transitional interval from the
greenhouse to icehouse conditions in the Ordovician climate [9,17–19,28,29].

This paper presents new δ18Oapatite measurements from the Ordovician conodonts
from the southern Holy Cross Mountains in SE Poland (Figure 1A; Table 1). Our results
provide δ18Oapatite data from, to date, a poorly recognised mid-latitude climatic zone of the
late Middle and Late Ordovician (see new data of Albanesi et al. [20] and Männik et al. [21]).
Until now, δ18Oapatite values from Ordovician conodonts have been broadly analysed on
samples from the tropical and subtropical realms; therefore, data from mid-latitudes are an
important supplement to the oxygen isotope dataset for the reconstruction of the 18O/16O
budget in the Ordovician oceans.
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Figure 1. (A) Geological map of the western Holy Cross Mountains (without Pleistocene deposits, 
after Czarnocki [30] and Dadlez et al. [31], modified) and locality of the Mójcza section, EEC—East-
European Craton, ŁB—Łysogóry Block, MB—Małopolska Block, BV—Brunovistulia block, BM—
Bohemian Massive, TTZ—Teisseyre-Tornquist Tectonic Zone, HCF—Holy Cross Fault, 1—Caledo-
nian front, 2—Variscan front, 3—Alpine front. (B) Palaeogeographic locality of the Mójcza section 
in the late Middle-Late Ordovician (palaeogeography from Scotese [32], modified) and other local-
ities documenting δ18Oapatite in the same stratigraphic interval (A—Trotter et al. [5]; B—Buggisch et 
al. [9]; C—Rosenau et al. [17]; D—Elrick et al. [18]; E—Quinton et al. [19]; F—Albanesi et al. [20]; 
G—Männik et al. [21]; H—Edwards et al. [22]; I—Herrmann et al. [28]; J—Quinton and MacLeod 
[29]). 

Table 1. Oxygen isotopic results from the Middle and Late Ordovician conodonts of the Mójcza 
section. 
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per Sample 

No. Analyses δ18O mean 
[‰VSMOW] 

Std. Error 
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Std. Dev. 

M1 

Darriwilian 

B, NI 8 35 16.99 0.16 0.95 
M2 B, P, NI 8 35 16.75 0.13 0.75 
M3 B, P, NI 7 28 17.29 0.18 0.96 
M4 B, D, NI 7 23 17.06 0.14 0.68 
M5 B, P, NI 7 27 17.68 0.16 0.85 
M6 A, D, NI 6 14 17.11 0.23 1.08 
M7 B, P, NI 4 11 17.82 0.30 0.99 
M8 

Sandbian 
B, P, NI 8 32 17.80 0.20 1.09 

M9 A, NI 4 14 19.00 0.19 0.71 
M10 A, NI 6 22 19.59 0.20 0.95 
M11 

Katian 

B, NI 6 20 19.10 0.37 1.66 
M12 A, B, NI 5 10 18.36 0.53 1.73 
M13 A, B, NI 5 14 18.42 0.31 1.17 
M14 A, S, NI 4 12 19.63 0.30 1.03 
M15 A, S, NI 7 24 19.46 0.12 0.59 
M16 S, A, H, NI 6 22 19,40 0.09 0.43 
M17 A, S, NI 4 14 20,66 0.24 0.89 
M18 A, H, NI 4 15 18.68 0.28 1.12 
M19 A, S, NI 4 12 18.70 0.19 0.65 
M20 A, NI 5 22 19,36 0.21 0.98 
M21 A, NI 7 25 18.12 0.22 1.11 

B—Baltoniodus sp., D—Drepanoistodus sp., P—Panderodus sp., A—Amorphognathus sp., S—
Scabbardella sp., H—Hamarodus sp., NI—not identified. 

Figure 1. (A) Geological map of the western Holy Cross Mountains (without Pleistocene deposits,
after Czarnocki [30] and Dadlez et al. [31], modified) and locality of the Mójcza section, EEC—
East-European Craton, ŁB—Łysogóry Block, MB—Małopolska Block, BV—Brunovistulia block, BM—
Bohemian Massive, TTZ—Teisseyre-Tornquist Tectonic Zone, HCF—Holy Cross Fault, 1—Caledonian
front, 2—Variscan front, 3—Alpine front. (B) Palaeogeographic locality of the Mójcza section in the
late Middle-Late Ordovician (palaeogeography from Scotese [32], modified) and other localities
documenting δ18Oapatite in the same stratigraphic interval (A—Trotter et al. [5]; B—Buggisch et al. [9];
C—Rosenau et al. [17]; D—Elrick et al. [18]; E—Quinton et al. [19]; F—Albanesi et al. [20]; G—Männik
et al. [21]; H—Edwards et al. [22]; I—Herrmann et al. [28]; J—Quinton and MacLeod [29]).

Table 1. Oxygen isotopic results from the Middle and Late Ordovician conodonts of the Mójcza
section.

Sample Stages Conodonts
No.

Conodonts
per Sample

No.
Analyses

δ18O mean
[‰VSMOW]

Std. Error
± Std. Dev.

M1

Darriwilian

B, NI 8 35 16.99 0.16 0.95
M2 B, P, NI 8 35 16.75 0.13 0.75
M3 B, P, NI 7 28 17.29 0.18 0.96
M4 B, D, NI 7 23 17.06 0.14 0.68
M5 B, P, NI 7 27 17.68 0.16 0.85
M6 A, D, NI 6 14 17.11 0.23 1.08
M7 B, P, NI 4 11 17.82 0.30 0.99

M8
Sandbian

B, P, NI 8 32 17.80 0.20 1.09
M9 A, NI 4 14 19.00 0.19 0.71
M10 A, NI 6 22 19.59 0.20 0.95
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Table 1. Cont.

Sample Stages Conodonts
No.

Conodonts
per Sample

No.
Analyses

δ18O mean
[‰VSMOW]

Std. Error
± Std. Dev.

M11

Katian

B, NI 6 20 19.10 0.37 1.66
M12 A, B, NI 5 10 18.36 0.53 1.73
M13 A, B, NI 5 14 18.42 0.31 1.17
M14 A, S, NI 4 12 19.63 0.30 1.03
M15 A, S, NI 7 24 19.46 0.12 0.59
M16 S, A, H, NI 6 22 19,40 0.09 0.43
M17 A, S, NI 4 14 20,66 0.24 0.89
M18 A, H, NI 4 15 18.68 0.28 1.12
M19 A, S, NI 4 12 18.70 0.19 0.65
M20 A, NI 5 22 19,36 0.21 0.98
M21 A, NI 7 25 18.12 0.22 1.11

B—Baltoniodus sp., D—Drepanoistodus sp., P—Panderodus sp., A—Amorphognathus sp., S—Scabbardella sp.,
H—Hamarodus sp., NI—not identified.

2. Geological and Palaeogeographic Outline

The Holy Cross Mountains (HCMts) represent a hilly area with the Palaeozoic in-
lier traditionally divided into the Łysogóry Region in the north and the Kielce Region
in the south (Figure 1A). They are parts of two large tectonic units exposed in this area:
the Łysogóry Block in the north and Małopolska Block in the south, separated by the
Holy Cross Fault (Figure 1A). The cratonic crust of the Łysogóry Block is similar to the
East European Craton located north-eastward, and this tectonic unit is considered as a
proximal terrane of Baltica ([33] and references therein). This is consistent with palaeo-
magnetic data [34] and Nd isotope data from the Upper Cambrian deposits [35]. In turn,
the Małopolska Block is considered either as a proximal terrane of Baltica accreted to this
palaeocontinent in the late Silurian–earliest Devonian [34,36] or an exotic terrane of the
peri-Gondwanan origin attached to Baltica in the early late Cambrian (see [35,37]) or in the
earliest Devonian ([33], and references therein). The palaeomagnetic data indicate that in
the Middle Ordovician, the Małopolska Block was located close to its present-day position
in relation to Baltica [34,38], in the mid-latitude zone of the southern hemisphere (Figure 1B)
and moved close to 30◦ S in the Hirnantian time [39]. Based on conodont fauna, Dzik [40]
argues that a relatively wide Tornquist Sea separated the HCMs and Baltica in the Middle
Ordovician.

The present-day distribution of the upper Middle and Upper Ordovician sedimentary
facies in the HCMts reveals the predominance of carbonates (Figure 2) in a narrow zone
extending along the northern margin of the Kielce Region (i.e., in the northern periph-
ery of the Małopolska Block). In the Łysogóry Region and southwestern Kielce Region
(Zbrza-Brzeziny), the stratigraphic equivalents of the Mójcza Formation are represented by
mudrock-dominated successions (Jeleniów and Wólka formations) of the deep-water shelf
(Figure 2; [41–43] and references therein).
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to the upper Katian (Figure 3) and is well-dated by conodonts of the upper serra to ordovi-
cicus zones [44,45]. The basal contact of the Mójcza Formation in this locality with the un-
derlying calcareous sandstones and sandy limestones of the Bukówka Formation is 
marked by a discontinuity surface documenting the Mid-Darriwilian hiatus including the 
lower serra, suecicus and upper variabilis conodont zones [44,46]. In addition to conodonts, 
the fossil assemblage of the Mójcza Formation consists of trilobites, brachiopods, echino-
derms, ostracods, bryozoans and molluscs [46,47]. The non-skeletal particles include 
phosphate ooids and carbonate and phyllosilicate oncoids, forming distinctive intervals 
in the uppermost Sandbian-lower Katian and the middle Katian, respectively (Figure 3; 
[46,47]). Based on grain components and matrix/cement types, four microfacies have been 
recognised in the Mójcza section, that is, (1) skeletal grainstone, or grainstone to pack-

Figure 2. Lithostratigraphy of the upper Middle and Upper Ordovician, and general facies layout
in the HCMts (compiled from Trela [41–43]; conodont zones after Dzik [44,45]. Hirn—Hirnantian,
BZ—Brzeziny Formation, ZF—Zalesie Formation.

3. Study Section

The studied section is located in the Mójcza village south-eastward of Kielce, in the
north-western Kielce Region (the northern margin of the Małopolska Block) (Figures 1 and 2).
It is the type-section of the Mójcza Limestone Formation (sensu Trela [41]), up to a 10 m
thick condensed unit. Its stratigraphic range extends from the upper Darriwilian to the
upper Katian (Figure 3) and is well-dated by conodonts of the upper serra to ordovicicus
zones [44,45]. The basal contact of the Mójcza Formation in this locality with the underlying
calcareous sandstones and sandy limestones of the Bukówka Formation is marked by a
discontinuity surface documenting the Mid-Darriwilian hiatus including the lower serra,
suecicus and upper variabilis conodont zones [44,46]. In addition to conodonts, the fossil
assemblage of the Mójcza Formation consists of trilobites, brachiopods, echinoderms, ostra-
cods, bryozoans and molluscs [46,47]. The non-skeletal particles include phosphate ooids
and carbonate and phyllosilicate oncoids, forming distinctive intervals in the uppermost
Sandbian-lower Katian and the middle Katian, respectively (Figure 3; [46,47]). Based on
grain components and matrix/cement types, four microfacies have been recognised in the
Mójcza section, that is, (1) skeletal grainstone, or grainstone to packstone; (2) skeletal grain-
stone with phosphate ooids; (3) skeletal packstones to wackestones; (4) skeletal packstones
with oncoids (Figure 3; see [46,47]). It is noteworthy that skeletal grains in the lower part
of the section, and notably above the discontinuity surface, are coated by thin phosphatic



Geosciences 2022, 12, 165 6 of 15

envelopes [46,47]. The Katian limestones are intercalated by thin (1–5 cm thick) K-bentonite
beds (Figure 3), and some layers in this interval reveal ferruginous impregnated surfaces.
The Mójcza Formation is overlain by up to 0.8 m thick marly mudstones (Figure 3) passing
upwards into the Wenlock graptolitic shales [48].

The Mójcza Formation was formed on an isolated carbonate platform developed in
the mid-latitude of SW peri-Baltica [47] dominated by temperate-water fauna [46] living in
marine waters with a normal salinity. Depositional conditions on this platform were stable
and characterised by a low sediment accumulation rate favouring the early diagenetic
phosphate and iron authigenesis [46,47]. Moreover, from the late Darriwilian to late
Sandbian, the sedimentary environment was influenced by a seasonal upwelling that
delivered nutrient-rich waters from the northward-located deep-water basin [47,49].

Geosciences 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

stone; (2) skeletal grainstone with phosphate ooids; (3) skeletal packstones to wack-
estones; (4) skeletal packstones with oncoids (Figure 3; see [46,47]). It is noteworthy that 
skeletal grains in the lower part of the section, and notably above the discontinuity sur-
face, are coated by thin phosphatic envelopes [46,47]. The Katian limestones are interca-
lated by thin (1–5 cm thick) K-bentonite beds (Figure 3), and some layers in this interval 
reveal ferruginous impregnated surfaces. The Mójcza Formation is overlain by up to 0.8 
m thick marly mudstones (Figure 3) passing upwards into the Wenlock graptolitic shales 
[48]. 

The Mójcza Formation was formed on an isolated carbonate platform developed in 
the mid-latitude of SW peri-Baltica [47] dominated by temperate-water fauna [46] living 
in marine waters with a normal salinity. Depositional conditions on this platform were 
stable and characterised by a low sediment accumulation rate favouring the early diage-
netic phosphate and iron authigenesis [46,47]. Moreover, from the late Darriwilian to late 
Sandbian, the sedimentary environment was influenced by a seasonal upwelling that de-
livered nutrient-rich waters from the northward-located deep-water basin [47,49]. 

 

Figure 3. Oxygen isotope values from the late Middle-Late Ordovician conodonts of the Mójcza
section and mean δ18Oapatite values for each studied sample on the right (conodont zones after
Dzik [44,45]). Boxplot rectangles represent data for each sample with a range between the 25th and
75th quantiles. The arithmetic mean for all measurements obtained for the sample is represented
by the black dot. Whiskers indicate maximum and minimum values within the 1.5 interquartile
data range. The resultant blue curve-running three-point means calculated within the R-studio
Environment, using the Local Polynomial Regression Fitting (LPRF) method, with a span of 0.2. The
grey interval shows a confidence interval (of 95%). The sea-surface temperature was calculated using
an equation from Lécuyer et al. [50], T [◦C] = 117.4 (±9.5) − 4.5 (±0.43) (δ18Oapatite − δ18Oseawater);
δ18Owater = −1‰ V-SMOW. Hirn.—Hirnantian, t/s tran. zone—tvaerensis/superbus transition zone.
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4. Samples and Methods

The 122 conodont elements in 21 samples from the Mójcza section were measured
for the δ18O value by secondary ion mass spectrometry (SIMS) using SHRIMP IIe/MC
ion microprobe (Table 1; Supplementary Materials Tables S1 and S2). They cover the
stratigraphic interval from the upper Darriwilian to the late Katian. Conodont elements
were extracted from crushed limestone samples fully dissolved in a 10% acetic acid. The
residual material was sieved, and then conodonts were selected using a steel needle.
Oxygen isotope analyses were performed on ramiform and coniform conodont elements
(usually fragmented) without preserved basal filling. Samples consisted of mixed specimens
that included unidentified elements and different taxa such as Baltoniodus, Panderodus,
Drepanoistodus, Amorphognathus, Scabbardella and Hamarodus (Supplementary Materials
Table S1) extracted from 10–15 cm thick beds. They reveal a low Colour Alteration Index
(CAI) of no more than 1 [51,52].

Oxygen isotopes from conodont apatite were measured using the SHRIMP IIe/MC
ion microprobe in the Polish Geological Institute-National Research Institute in Warsaw,
according to the general analytical procedure of bioapatite in situ measurements devel-
oped in the SHRIMP laboratory of the Research School of Earth Sciences at Australian
National University [5,53,54]. Selected conodont specimens and the primary Durango
apatite standard were placed on a double-stick tape with sufficient orientation inside a
circle of 35 mm in diameter, forming a megamount. The conodonts were arranged in rows,
but Durango apatite chips (internal standard) were placed in the centre. Prepared samples
were flooded by EpoFix Stuers resin. After hardening, the megamounts were cut and
ground to a thickness of ~5 mm and polished to expose cross-sections of conodont and
apatite standards, and washed with ethanol and ultrasonically cleaned with deionised
water. Reflected (RL) and transmitted light (TL) imaging was conducted before the ana-
lytical session. This documentation was the basis for the preselection of the spot location.
The Au-coated mounts were stored in the instrument chamber for SIMS analyses. In situ
measuring procedures in this study are similar to those previously reported by Narkiewicz
et al. [55] and Rigo et al. [54]. Two to seven measurements were made in each conodont
element on the uniform surface devoid of apparent heterogeneities. The Cs+ primary ion
beam was accelerated at 15 kV, with an intensity of ca. 3.5 nA. Oxygen isotopes were
measured using the “multi-collection” mode.

The mass resolution used to measure oxygen isotopes was ca. 1800, counted at 10%
of the height of the peak. The measurement of oxygen isotopes included two sets for
six scans of 16O- and 18O mass measured simultaneously on Faraday’s cups. The total
measurement time of one point was about 7 min, including 120 s seconds of rastering.
All the SHRIMP analyses were referred to the primary apatite standard Durango 3 (see
Supplementary Materials Table S2) according to that described by Trotter et al. [53] with
a δ18O composition of 9.8 ± 0.25‰ determined by gas isotope ratio mass spectrometry
(GIRMS) and normalised to NBS120c = 21.7‰. Isotope values are reported in the standard
Vienna Standard Mean Ocean Water scale (V-SMOW).

Each analytical session (usually <200 analyses to minimise the instrumental drift)
was monitored by measuring the Durango standard every 3–4 sample analyses. Statistical
reduction of the collected data was performed separately for each session using POXI MC
v 2.9 software, developed in-house at the Australian National University.

The standard deviation of Durango by SHRIMP analyses was 0.15–0.45‰ with a
regular number (n = 19–22) of standard analyses for each session.

5. Results

The measured δ18Omean values from conodont taxa in the Mójcza section range from
16.75 to 20.66‰VSMOW with an average of 18.48‰VSMOW (Table 1; Supplementary Materials
Table S1). Mean standard deviations of δ18O from studied conodont samples range from
0.43‰ (sample M16) to 1.73‰ (sample M12) (Table 1; Supplementary Materials Table S1).
The minimum and maximum values of δ18Omean from conodonts of the same sample differ
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from 0.8 (sample M16) to 4.18‰ (samples M10, M13) (Supplementary Materials Table S1).
In ten samples, this difference is in the range of 1.0–1.8‰ (M1, M2, M3, M4, M7, M14, M17,
M18, M19, M20), and only in three samples, it is less than 1‰ (M9, M15, M16), whereas
in three samples this difference is ~2.5‰ (M5, M6, M8). In five samples (M10, M11, M12,
M13, M21), the difference is even higher, and ranges as high as 3.4–4.18‰ (Supplementary
Materials Table S1).

In the upper Darriwilian to lower Sandbian interval, the oxygen isotope analyses
show a general increasing trend with slightly variable δ18Oapatite values scattered around
the baseline value ~17.5‰, ranging from 16.75‰ to 17.82‰ (Table 1; Figure 3). Their
comparison with SIMS-based measurements from the other localities indicates that values
from the Darriwilian–Sandbian transition (samples M5, M7, M8) are within a similar range
to those reported by Albanesi et al. [20] from Precordillera and Laurentia (the Marathon
area in Texas) (Figure 4). Furthermore, our data from this interval are similar to the single
sample (8119; 17.8‰) from the middle Sandbian [5], and they are in the lower range of
SIMS-based δ18Oapatite values from the Antelope Range in Nevada [22] (Figure 4).
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An increasing trend continues in the middle Sandbian–Katian interval and shows a
shift of the baseline value to ~19‰ (Figure 3). The δ18Oapatite values in this part of the
Mójcza section are more variable and vary between 18.12 and 20.66‰ (Table 1; Figure 3).
The two highest δ18Oapatite values in the Mójcza section have been reported in this interval,
and they reach 19.59 and 20.66‰ (samples M10 and M 17), respectively (Table 1; Figure 3).
The lower positive shift occurs in the upper Sandbian within the upper tvaerensis conodont
zone, whereas the second excursion correlates with the middle Katian and the boundary
of the superbus/ordovicicus zones (Figure 3). An increasing trend in the lower excursion
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starts already in the middle Sandbian, as can be inferred from the sample M9 that shows
a comparable value to SIMS-based analysis from the same stratigraphic interval in Pre-
cordillera [20] (Figure 3; Figure 4). In turn, the δ18Oapatite values from the lower-middle
Katian transition are generally within the same range as measurements from the Cincinnati
Arch region of Kentucky and Indiana (Laurentia) but, compared to our data, most values
from the USA are above 20‰ [22]. The δ18Oapatite analyses from the upper Katian of the
HCMts are nearly the same as SIMS-based measurements from Laurentia provided by
Trotter et al. [5] and Albanesi et al. [20] (Figure 4).

Numerous δ18Oapatite values from the late Sandbian–Katian conodonts have been pro-
vided from Laurentia [9,17–19,22,28] and Baltica [21] measured using a high-temperature
conversion-elemental analyser (TC-EA) coupled online to a mass spectrometer. However,
the comparison of δ18Oapatite values obtained from the TC-EA method with the SIMS-based
data needs correction since the latter is usually higher, and an empirically estimated offset
between these methodologies is ~1.0‰ (see [22,53,57]). With this correction (average −1‰),
our data from the upper Sandbian–Katian are generally in the same range as those from
the cited above papers, but most of them are scattered around an average of 18.5‰.

6. Discussion

It is assumed that conodont δ18O is dependent on the oxygen isotope composition,
temperature, and salinity of the ambient seawater. However, evidence shows that indi-
vidual conodont species can reveal an offset of δ18Oapatite values related to their different
palaeoecology and life habits [16,28,29,58,59]. In addition, Wheeley et al. [58] have reviewed
the effects of the thermal alteration and sample processing and extraction methods on the
oxygen isotope signature of conodont samples. The application of analytical protocols
proposed by these authors may contribute to obtaining more reliable δ18O values. Despite
post-mortem artefacts, the oxygen isotope studies of conodonts are considered reliable
tools for tracing seawater palaeotemperature evolution and climate changes [5,24,25,60,61].

6.1. Calculation of Palaeotemperatures

The fossil fauna of the carbonate Mójcza platform indicates normal marine salinity
of ambient seawater [46,47]. The low CAI of studied conodonts allows the assumption
that they were not deeply buried and devoid of a significant thermal alternation, affecting
oxygen isotope values.

Calculation of sea-surface palaeotemperature from bioapatite is based on the widely
accepted assumption that, in non-glacial periods of Phanerozoic, the δ18O for normal
seawater was −1‰ [5,16,53,61]. However, it should be noted that the 18O/16O budget
of ocean waters over the geologic time is still under discussion, and an opposite concept
implies increasing seawater δ18O through Phanerozoic with superimposed short-term
oscillations corresponding to glacial episodes ([62–66] and references therein).

Palaeotemperatures from δ18Oapatite of studied conodonts were calculated using the
equation of Lécuyer et al. [50]: T(◦C) = 117.4 (±9.5) − 4.5 (±0.43) (δ18Oapatite − δ18Oseawater)
but the estimated temperature may differ depending on the palaeotemperature equation
used, and may even be up to 8 ◦C [67–69]. Moreover, some authors highlight that the
correct δ18O value for NBS-120c is uncertain and, therefore, may be responsible for a further
variation of ~4 ◦C (see [67,70]).

Considering the low CAI of studied conodonts and normal marine salinity, and the
ice-free pre-Hirnantian seawater δ18O value of −1.0‰ V-SMOW, the calculated mean sea-
surface temperatures from SIMS-based δ18Oapatite (16.75 to 20.66‰) are within the wide
range between 38 and 20 ◦C. The δ18Oapatite values from the upper Darriwilian conodonts
indicate that the mean sea-surface temperature in that time varied between 35 and 38 ◦C,
and then dropped to 33 ◦C (δ18Oapatite = 17.82‰) in the transition to the lower Sandbian
(samples M7 and M8; Figure 3, Table 1). This palaeotemperature range is clearly higher than
predicted sea-surface temperatures for mid-latitudes in the late Middle-Late Ordovician
time (see [4,71]). Moreover, it must be noted that 38 ◦C is the upper temperature limit that is
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lethal for modern marine animals, and this limit can also be applied to the Ordovician fauna.
The calculated palaeotemperatures for the late Sandbian and middle Katian δ18Oapatite
positive excursions would indicate a decrease to 25 ◦C (sample M10) and 20 ◦C (sample
M17), respectively (Figure 3).

6.2. Variability of δ18Oapatite in a Climatic Context

Conodont samples from the Mójcza Formation display an increase in mean δ18Oapatite
values since the late Darriwilian to late Katian, which can be interpreted in the palaeo-
climatic context as gradual cooling during this time. However, this general assumption
contradicts the stabilisation of the Ordovician climate from the middle Darriwilian to mid-
dle Katian with sea-surface temperatures similar to the present-day equatorial regions [5].
It should be noted that the sampling resolution through this interval in Trotter et al. [5]
is too low to discern any climatic changes in this time interval. Our data suggest a more
variable oxygen isotope record through the upper Darriwilian to middle Katian roughly
consistent with the increasing δ18Oapatite trend documented in the coeval stratigraphic
interval from Estonia [21] and China [72]. The Estonian δ18Oapatite data are particularly
important for a comparative analysis with our results since in the Ordovician both areas
were palaeoegeographically related to Baltica. In addition, the high-resolution Estonian
data provide insights into oxygen isotope changes characterised by distinct cooling events
in the Late Ordovician epicontinental sea [21].

The conodont specimens predominating in the studied samples are represented by
taxa with a pelagic mode of life that preferred a shallow-water (e.g., Baltoniodus, Panderodus)
to relatively deeper-water (e.g., Scabbardella, Amorphognathus) environment (see [44,73,74]).
However, it is noteworthy that Sweet [73] suggests that at low-latitude sites, Amorphog-
nathus occupied the deeper-water setting in contrast to high latitudes, and points out that
the distribution of this species was mainly controlled by temperature, not depth. The
identification of studied conodonts at the genus level and the presence of unidentified
specimens make detailed palaeoecological interpretation of the obtained oxygen isotope
analyses difficult; therefore, we focused on an overall isotopic trend and its climatic im-
plication. Increasing δ18Oapatite values in the Mójcza section suggest a gradual decrease in
sea-surface temperature from the late Darriwilian (also postulated by Rasmussen et al. [10])
with the first climax (19.59‰ in sample M10) in the late Sandbian (Figure 3). The three-
point running δ18Oapatite curve evidently indicates a significant increasing trend through
the Sandbian (Figure 3); however, a low sampling resolution in this interval precludes
a more precise climatic interpretation. Notably, the first significant shift of δ18Oapatite is
within the upper tvaerensis conodont zone and appears to correspond to the Estonian
Haljala cooling event (see [21]). This isotopic shift correlates with intense bioturbation and
benthic oxygenation in the deep-water shelf of the northern HCMts and coincides with the
late Sandbian sea-level fall preceding the expansion of anoxic conditions during the early
Katian transgression [43,75]. Furthermore, the discussed δ18Oapatite shift occurs in the time
characterised by intensified volcanic activity evidenced by numerous ash beds in Laurentia
and Baltica (see [76–80]). An increase in δ18Oapatite values in the late Sandbian has also been
noted in Laurentia [9,28], at the Sandbian/Katian boundary in China [72], and in the middle
Sandbian from Precordillera [20]. The positive δ18Oapatite excursion in Laurentia has been
linked by Buggisch et al. [9] with climate cooling driven by intense volcanism evidenced
by the Deicke ash bed. This hypothesis has been challenged by Herrmann et al. [28], who
estimated fluctuations of ocean temperatures at that time based on oxygen isotopes from
conodonts and did not find climatic perturbations associated with the volcanic eruption;
instead, they suggested the pre-Deicke cooling.

A ~1.2‰ drop of the δ18Oapatite values in samples M12 and M13 compared to M10
can correspond to the early Katian warming recorded in Laurentia [19,28,29]. In this part
of the Mójcza section, Dzik [44,45,81] noted the occurrence of warm-water Rhodesognathus
in the conodont assemblage. The following highest δ18Oapatite excursion in the Mójcza
section occurring in the middle Katian (sample M 17, Figure 3) appears to be coeval to the
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Estonian early Nabala or Vormsi cooling events extending across the superbus/ordovicicus
conodont zones (see Männik et al. [21]). An increase in δ18Oapatite to 20.66‰ suggests a
temperature drop by 4–5 ◦C compared to samples M15 and M16. It is noteworthy that the
main excursion in the lower ordovicicus zone (sample M17) was preceded by a slight increase
in the δ18Oapatite to 19.63‰ (sample M14) in the upper superbus zone (Figure 3; Table 1).
Such a value was originally recorded by Trotter et al. [5] in the Hirnantian conodonts
from the subtropical zone of Laurentia. So, this two-stage middle Katian excursion in the
condensed Mójcza section may be an isotope signature of two short-term climate shifts
corresponding to the Nabala and Vormsi cooling events, respectively. Moreover, this
Katian shift is coeval with the increasing frequency of cool-water conodont Scabdardella,
which remained a dominating species up to the top of the Mójcza section [44,81]. The
middle Katian δ18Oapatite positive shift correlates with increased benthic oxygenation in the
northern HCMts [43] produced by a significant change in ocean circulation due to polar
cooling [75].

It should be noted that, as discussed above, cooling events in the late Sandbian
to middle Katian of the HCMts seem at odds with stable and warm climate conditions
recorded during this time in Laurentia [19,28,29]. On the other hand, Elrick et al. [18]
provided δ18Oapatite data for orbital-scale glacioeustasy and related changes in ice volume
and sea-surface temperatures in the Katian time. Furthermore, fluctuations of the δ18Oapatite
across the Sandbian–Katian transition in southern Oklahoma are interpreted as climatic
perturbations with the cooling event recorded by the positive oxygen isotope shift within
the lower GICE preceded by warm climate conditions [17]. Given highly variable δ18Oapatite
values recorded in the Haljala Regional Stage in Estonia [21] and data from the HCMts, we
can infer that the climate in the late Sandbian of the mid-latitude belt was characterised
by unstable conditions. This variability in climatic conditions persisted throughout the
entire Katian. This can be supported by cold episodes documented by Dzik [45,81] in the
conodont assemblage of the Mójcza section recording the migration of Gondwanan taxa
to the mid-latitude zone. It seems consistent with glacioeustatic events recognised in the
Katian of southern Morocco (Gondwana) based on high-resolution facies analysis [82].

7. Conclusions

The δ18Oapatite values in the studied section reveal an increasing trend ranging from
16.75 to 20.66‰VSMOW, consistent with an overall trend documented in the oxygen isotope
record of other places. The three-point running δ18Oapatite curve indicates two substantial
positive excursions occurring in the upper Sandbian and middle Katian, respectively,
which seem at odds with stable and warm climate conditions postulated during that time
in Laurentia. However, it should be noted that positive shifts in the same stratigraphic
interval have been reported in some localities of the sub-tropical and mid-latitude belts.
They have been considered as the isotopic record of climate cooling and related decrease
in sea-surface temperature driven by increasing ice volume. The calculated sea-surface
palaeotemperature from the δ18Oapatite shows a decreasing trend ranging from 38 ◦C in the
late Darriwilian to 25 and 20 ◦C in the late Sandbian and middle Katian cooling events,
respectively. However, the sea-surface palaeotemperature estimated for the late Darriwilian
and early Sandbian is higher (with a temperature of 38 ◦C lethal for marine fauna) than
predicted for mid-latitudes in that time. Our studies, together with other data from the
literature, indicate a variable oxygen isotope record in the Sandbian–middle Katian interval,
suggesting a more complex climate trend, at least in the mid-latitude zone; however,
regional and/or seasonal controls on the δ18Oapatite changes should also be considered.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/geosciences12040165/s1; Table S1: (Measurements of δ18Oapatite
by secondary ion mass spectrometry (SIMS) using SHRIMP IIe/MC ion microprobe) and Table S2
(Measured oxygen isotope values for the reference Durango apatite analysed in this study).
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