TOIMETISED N3BECTNS

АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР

EP. 991

КЕЕМІА GEOLOOGIA ХИМИЯ ГЕОЛОГИЯ

KIRJASTUS "PERIOODIKA" TALLINN ИЗДАТЕЛЬСТВО "ПЕРИОДИКА" ТАЛЛИН

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÖIDE KEEMIA * GEOLOOGIA, 1968, Nr. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII химия * геология. 1968, № 4

А. ЛООГ

РЕДКИЕ ЗЕМЛИ В ОБОЛОВЫХ ФОСФОРИТАХ ЭСТОНИИ

A. LOOG. HARULDASED MULLAD EESTI OOBOLUSFOSFORIIDIS

A. LOOG. RARE EARTHS IN ESTONIAN OBOLID PHOSPHORITES

В мелко- и среднезернистых кварцевых песчаниках пакерортского горизонта (нижний ордовик) встречаются линзовидные скопления фосфатных створок брахиопод из семейства Obolidae (содержание в створках $P_2O_5 \sim 36\%$). Эти биогенные фосфориты, известные под названием оболовых фосфоритов (со средним содержанием P_2O_5 15%), имеют характерный комплекс редких и рассеянных элементов. Содержание их было определено автором в Институте геологии АН ЭССР методом приближенного количественного спектрального анализа.

В оболовых фосфоритах, по данным спектрального анализа ста образцов, встречаются: Ва (среднее содержание 0,015%), Ве (0,0001%), Сг (0,0003%), Си (0,0025%), Мо (0,0002%), Ni (0,0007%), Pb (0,009%), Sr (0,17%), V (0,0003%), Zr (0,013%) и Ti (0,05%). В единичных образцах были обнаружены Ag, Co, Ga и Zn. Особенно высоко содержание в оболовых фосфоритах редких земель, в том числе и иттрия, по сравиению с их кларковым содержанием (Лоог, 1962а).

В нескольких образцах оболовых фосфоритов было химически определено содержание ΣTR_2O_3 и P_2O_5 (табл. 1).

Таблица і

№ образца	Пачка	$\sum_{\substack{\searrow\\ \%}} TR_2O_3,$	P ₂ O ₅ , %			
907	A2-3M	0,16	26,21			
17	$A_{2-3}M$	0,14	24,51			
3	$A_{2-3}M$	0,07	11,74			
4	$A_{2-3}M$	0,06	10,13			
1202	$A_{2-3}M$	0,09	14,42			
434	$A_{2-3}S$	0,16	27,59			
Среднее		0,11	19,10			

Содержание > TR2O3 в оболовых фосфоритах

Среднее содержание суммы редких земель в оболовых фосфоритах (0,11%) в пять раз выше, чем в земной коре (0,022% по А. Виноградову, 1962), немного больше, чем в фосфоритах СССР (0,08% по Е. Семенову, В. Холодову и Р. Баринскому, 1962), и совпадает со средним содержанием их в фосфоритах по К. Краускопфу (1959).

Для выяснения характера распределения отдельных лантаноидов в оболовом фосфорите в рентгеноспектральной лаборатории Института минералогии, геохимии и кристаллохимии редких элементов АН СССР

Lühiuurimusi * Краткие сообщения

Р. Баринским был определен состав лантаноидов в четырех химически выделенных осадках редких земель с точностью 5—7% и чувствительностью 0,05% (табл. 2). Иттрий при этом не определялся. Количественно преобладают лантаноиды цериевой группы, имеющие в основном цериевый максимум (табл. 2; рисунок, обр. 907). Это характерно также для распределения лантаноидов в земной коре (по В. Гольдшмидту, 1938) и в фосфоритах (по Е. Семенову, В. Холодову и Р. Баринскому, 1962). Только в одном случае (обр. 3) встречается неодимовый максимум.

Таблица 2

№ образца	TR ₂ O ₃ ,	Состав редких земель, %													
		La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tu	Yb	Lu
907 17 3 4	0,16 0,14 0,07 0,06	13,7 1 2,7 2,0 15,1	37,9 35,9 3,1 39,8	5,2 5.1 16,3 5,4	16,3 16,5 75,8 15,7	5,9 14,4 1,9 5,4	0,7 0,3 0,3 0,6	9,8 5,8 0,5 7,8	0,7 0,5 1,2	4,6 3,4 0,1 3,6	0,3 		0,5 (0,3)	2,6 2,1 	0,7 0,4 (0,5)

Данные табл. 1 показывают, что между содержанием в породе P_2O_5 и суммой TR_2O_3 существует прямая зависимость. Следовательно, содержание редких земель, а также иттрия зависит от насыщенности породы фосфатами. Так как в песчаниках пакерортского горизонта фосфатный материал в основном представлен фосфатными створками оболид, то можно сказать, что редкие земли концентрируются в створках оболид. Они могут изоморфно входить в решетку фосфатного минерала (франколита), из которого сложены створки (Лоог, 19626).

Редкие земли, по всей вероятности, находились в воде раннетремадокского бассейна Прибалтики в состоянии резкого недосыщения. В организмах оболид они выполняли определенную физиологическую роль и могли впоследствии накапливаться в створках. Из этого следует, что

концентрация редких земель в оболовых фосфоритах является в основном сингенетической. Но иногда относительное обогащение фосфатных створок оболид неодимом происходит в процессе диагенеза. По Е. Семенову и Р. Баринскому (1958), при окислительно-

Состав лантаноидов в оболовых фосфоритах: І — обр. 90?; II — обр. 3.

восстановительных процессах в осадках церий может окисляться до четырехвалентного состояния. Так как четырехвалентный церий малоподвижен и трудно растворим, то в иловых растворах наблюдается нарушение нормального спектра редких земель. Таким образом и в створках оболид могла появляться ассоциация лантаноидов с неодимовым максимумом (рисунок, обр. 3).

ЛИТЕРАТУРА

Виноградов А. П. 1962. Среднее содержание химических элементов в главных типах изверженных горных пород земной коры. Геохимия, № 7.

Гольдшмидт В. М. 1938. Принципы распространения химических элементов в минералах и горных породах. Сборник статей по геохимии редких элементов. М.—Л.

Краускопф К. Б. 1959. Осадочные месторождения редких металлов. В сб.: Проблемы рудных месторождений. М.

Лоог А. Р. 1962а. К геохимии нижнего ордовика Эстонии. Тр. Ин-та геол. АН ЭССР, 10.

Лоог А. Р. 19626. О фосфатном материале оболовых фосфоритов. Изв. АН ЭССР, Сер. физ.-матем. и техн. наук, 11, № 3.

Семенов Е. И., Баринский Р. Л. 1958. Особенности состава редких земель в минералах. Геохимия, № 4.

Семенов Е.И., Холодов В. Н., Баринский Р. Л. 1962. Редкие земли в фосфоритах. Геохимия, № 5.

Тартуский государственный университет Поступила в редакцию 5/V 1968