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New information is provided on trace fossils from the Cambrian Series 2 to 

Miaolingian in the Upper Member of the Duolbagáisá Formation of northern 

Norway. This includes the first rich Cambrian material of Halimedides, a trace 

fossil with more or less regularly spaced swellings of different shapes

connected by a median string. It is known principally from Mesozoic and

younger deep-sea deposits, with a scarce Paleozoic record, making this one of

the oldest occurrences of this ichnogenus. Other trace fossils occurring with 

Halimedides include the rare Bergaueria sucta, Palaeophycus imbricatus and

Cruziana tenella. Psammichnites gigas and Syringomorpha nilssoni are 

documented photographically for the first time from this unit. The trace fossil

association shows general similarity with that of the slightly older Mickwitzia 

Sandstone Member of southern Sweden and suggests a broad distribution of

late early Cambrian trace-fossil producers across Baltica.
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Introduction 
The Digermulen Peninsula, Finnmark, northern Norway, yields outcrops of

sedimentary rocks spanning from Ediacaran glacial sediments to the Lower

Ordovician (Fig 1A, B). Within this succession, the Cambrian sandstone-

dominated Upper Member of the Duolbagáisá Formation forms prominent cliff-

faces along large stretches of the Digermulen Peninsula. This unit,

approximately 400 m thick, consists of thick-bedded, medium- and coarse-

grained sandstone, and minor thin-bedded sandstone and shale, within which 

Banks (1973) identified facies representing deposition in a tidally influenced 

offshore setting. Body fossils include horizons with trilobites, notably Kjerulfia

and ellipsocephalids, high up in the unit (Nikolaisen & Henningsmoen, 1990;

Ebbestad et al., 2017). These trilobites, together with organic-walled

microfossils, constrain the member to Cambrian Stage 3 and Stage 4, with the 

uppermost part being Miaolingian in age (Palacios et al., 2020).

Trace fossils are common within the Upper Member of the Duolbagáisá 

Formation, but to date have been mostly reported in the form of lists of

ichnotaxa and only a few specimens have been figured. Banks (1970) reported 

Skolithos, Diplocraterion, Syringomorpha and Rusophycus in the high-energy

sandy parts in thick-bedded units, and additionally listed Cruziana, 

Dimorphichnus, Diplichnites and Rhizocorallium, as well as horizontal radial

burrows. Nikolaisen & Henningsmoen (1990) reported large Bergaueria. Later

on, McIlroy & Brasier (2017) described Phoebichnus and Monomorphichnus,

and in the supplementary material illustrated Cruziana, Rusophycus and other

unidentified trace fossils.

Here we provide new information on trace fossils from the Upper Member of 

the Duolbagáisá Formation, based on two slabs with well-preserved trace 

fossils. Remarkable are numerous specimens of Halimedides, an ichnogenus 
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consisting of strings with ring-like swellings, with the only previous Cambrian 

record consisting of single specimens from Sweden and eastern USA 

(Bjerstedt & Erickson, 1989; Jensen, 1997). These slabs also provide new 

records of the rare Bergaueria sucta. 

Geological setting 
The Caledonian Lower Allochthon Gaissa Nappe Complex (GNC) in northern 

Norway consists of a nearly 3000 m-thick Neoproterozoic to Lower Ordovician 

succession of mainly fluvial and shallow-marine sedimentary rocks formed in a 

foreland basin marginal to Baltica (Townsend et al., 1986; Gayer et al., 1987; 

Meinhold et al., 2022). The GNC is divided into the Cryogenian–Terreneuvian 

Vestertana Group and the overlying Cambrian Series 2–Lower Ordovician 

Digermulen Group (e.g., Reading, 1965; Banks et al., 1971; Nielsen &

Schovsbo, 2015). The Digermulen Group is known only from the Digermulen 

Peninsula. Well-exposed outcrops can be followed along the entire Digermulen 

Peninsula (Fig. 1).

The 650 m-thick Duolbagáisá Formation represents the lowermost unit in the

Digermulen Group. The lower boundary of the formation, and thereby the base 

of the Digermulen Group, is currently set at an interval recognised by the rich 

occurrence of large trace fossils (Reading, 1965), and as such is not defined 

following lithostratigraphical criteria and it needs a revision. The Duolbagáisá 

Formation is divided into two members constrained temporally by a

biostratigraphically diagnostic micro-and macrofossil record (Palacios et al.,

2020).

The 256 m-thick Lower Member of the Duolbagáisá Formation consists mainly 

of siltstone and a few sandstone-dominated intervals (1–20 m thick). Its basal 
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part is within the uppermost part of the Terreneuvian Stage 2 and continues 

into the Cambrian Series 2, Stage 3, corroborated by the occurrence of an 

acritarch assemblage of the Skiagia ornata–Fimbriaglomerella membranacea 

Zone (Palacios et al., 2020). The 394 m-thick Upper Duolbagáisá Member 

consists of thick quartzite beds intercalated with minor laminated sand-, silt- 

and mudstone. Several coarsening upward parasequences are recognised 

within the Upper Member, representing the Cambrian Stage 3 and 4, and 

straddling into the lower part of the Miaolingian Series. Stage 3 and 4 are 

recognised by acritarch assemblages of the Skiagia ornata–Fimbriaglomerella 

membranacea (Stage 3), Heliosphaeridium notatum–Skiagia ciliosa (Stage 3 

and 4) and the Volkovia dentifera–Liepaina plana (Stage 4) zones (Fig. 1; 

Palacios et al., 2020).  

 

In an approximately 40 m-thick siltstone- and mudstone-dominated sequence 

in the middle part of the member, located in the valley up from the shoreline at 

Breidvika (Fig. 1), comprehensive material of olenelloid and ellipsocephalid 

trilobites is found together with age-diagnostic acritarchs (Nikolaisen & 

Henningsmoen, 1990; Ebbestad et al., 2017; Palacios et al., 2020). Another 

trilobite-bearing mudstone occurs approximately 80 m further up-section in the 

valley, containing an ellipsocephalid species together with a linguliform 

brachiopod. These occur approximately 10 m below the first, rare occurrence 

of Comasphaeridium longispinosum, an acritarch indicating a close proximity 

to the Cambrian Series 2–Miaolingian Series boundary (Palacios et al., 2020). 

The Cambrian Series 2–Miaolingian Series boundary is seemingly without any 

significant sedimentation breaks, and the succession can be followed 

throughout the uppermost 70 m-thick parasequence of the Upper Member, 

which contains acritarchs diagnostic of the Wuliuan Stage at the base of the 

Miaolingian Series (Palacios et al., 2020). This uppermost parasequence 

consists of 7.5 m of basal, laminated, sand-, silt- and mudstone rich in trace 

fossils, overlain by a massive 63 m-thick quartzite with alternating pink and 
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white colouring (Fig. 1D). An ellipsocephalid species is recognised in the lower 

part of this quartzite. Nielsen & Schovsbo (2015) considered the thick 

quartzite-dominated upper part of this member as lowstand deposits possibly 

related to the Hawke Bay regression event.  

 

Material and methods 
Two trace fossil-rich slabs described herein with the field sample No. D13–96, 

(shown in Fig. 1) consist of the larger TSGf 18356 (Fig. 2), and the smaller 

TSGf 18453 (Fig. 3). These were collected as float by M.H. that, based on 

lithology and outcrop proximity can be securely tied to a 1.5–2 m-thick, white-

coloured band located 12–14 m in the uppermost parasequence of the Upper 

Member (Figs. 1D, 4). The slabs are both approximately 5 cm thick and consist 

of fine-grained sandstone with the base showing casts of ripples. The two 

slabs were clearly from the same bed; this part of the parasequence stands out 

by its pale colouration and the rich occurrence of large Rusophycus and 

Cruziana. From the same interval the impression of a single unidentified 

trilobite is reported here (Fig. 1C, D). 

 

Trace fossils on the two slabs are dominated by Halimedides annulatus, 

Bergaueria sucta, Palaeophycus imbricatus and vertical burrow fragments with 

rare Cruziana tenella and Cochlichnus. The distribution of trace fossils on the 

two slabs is shown in Figs. 2 and 3.  

Described material is kept in the palaeontological collection of the Arctic 

University Museum in Tromsø, prefix TSGf.  

 

Description of trace fossils 
Ichnotaxa on the two slabs are described in alphabetical order.  
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Ichnogenus Bergaueria Prantl, 1946 

Bergaueria sucta Seilacher, 1990 

Fig. 5 

 

Material. – TSGf 18356 (5 specimens) and TSGf 18453 (5 specimens). 

 

Description. – The traces consist of a combination of circular flat-based discs, 

and bulb-like structures 10 to 20 mm wide and extending a few millimetres 

above the bed sole. Variations in morphology include semi-circular arches (Fig. 

5C, E) that may be laterally repeated producing arcuate complexes (Fig. 5F, 

G). The specimen in Fig 5A (TSGf 18356) comprises an especially well-

preserved complex measuring ~30 × 30 mm, with each arch 19 mm in 

diameter. Specimen in Fig. 5D is somewhat worn, rounded and lacks details. 

Lateral repetition of the circular disc is distinctly indicated in Fig. 5F, extending 

6 mm above the bed sole.  

 

Remarks. – Seilacher (1990) erected Bergaueria sucta on the basis of a 

specimen from the Mickwitzia Sandstone Member of the File Haidar 

Formation, Sweden, and reported additional specimens from the Araba 

Formation of Sinai. B. sucta has also been reported from the Burj Formation of 

Jordan (Hofmann et al., 2012). These occurrences, as well as the one reported 

here, are all Cambrian Epoch 2 or early Miaolingian age. Additional specimens 

of B. sucta have since been reported from the Mickwitzia Sandstone Member 

(Jensen, 1997), but it still remains a rare form.  

Bergaueria sucta differs from other species of Bergaueria in having a high 

width to depth ratio, a base that is flat or concave, rather than convex, and also 

in showing lateral displacement. Seilacher (1990, 2007) interpreted B. sucta as 

formed by the basal disc of an actinian-like animal (see Fig. 5B). Examples of 

Bergaueria more typical of the ichnogenus are also present in the Upper 
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Member of the Duolbagáisá Formation. Nikolaisen & Henningsmoen (1990, p. 

76) mention large specimens of Bergaueria and material of this character was 

figured in McIlroy & Brasier (2017, Supplementary material). We have 

observed Bergaueria perata in the Upper Member. 

 

Ichnogenus Cochlichnus Hitchcock, 1858 

Cochlichnus isp. 

Figs. 6D, 7C 

 

Material. – TSGf 18356 (1 specimen). 

 

Description and remarks. – Small, sinuously curved trace fossil, 1 mm wide, 

wavelength 3–5 mm and amplitude 1–2 mm (Figs. 6D, 7C). Although some 

irregularity can be seen in the sinuosity this trace fossil can be assigned to 

Cochlichnus.  

 

Ichnogenus Cruziana d’Orbigny, 1842 

Cruziana tenella (Linnarsson, 1871) 

Fig. 6A–C 

 

Material. – Two specimens on TSGf 18356. Additional specimens observed in 

loose material from the Upper Member of the Duolbagáisá Formation. 

 

Description. – Small, bilobed trace fossils with prominent central grooves 

preserved in positive relief on the bed sole. Two specimens on TSGf 18356, 

are approximately 2 mm wide, and 6 and 3 mm long (Fig. 6A, B). A piece 

collected in float (TSGf 18454) from approximately the same stratigraphical 
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level shows closely spaced horizontal repetition of short bilobed elements (Fig. 

6C). 

Remarks. – Cruziana tenella is a small bilobed trace fossil attributed to the 

activity of small arthropods. The ichnotaxon is rare in the material from the 

Digermulen Peninsula, but elsewhere commonly occurs in large numbers and 

with crossing paths. Transverse or oblique ridges on the lobes, reflecting the 

activity of appendages, are not seen in the present material. Such ridges are 

generally only visible in well-preserved specimens in fine-grained sediment. A

particularly rich Cambrian material is known from the Mickwitzia Sandstone,

File Haidar Formation, Sweden (Jensen, 1997; Kesidis et al., 2019). C. tenella

on the slabs is short, approaching Rusophycus in length vs. width ratio, while

those collected in float (Fig. 6C) are more extensively developed and similar to 

the material from the File Haidar Formation.

Ichnogenus Halimedides Lorenz von Liburnau, 1902 

Halimedides annulata (Vyalov 1971)

Fig. 7

Material. – TSGf 18356 (approximately 220 specimens) & TSGf 18453 

(approximately 150 specimens).

Description. – The horizontal strings are 2–3 mm wide with spherical to heart-

shaped swellings, 7–8 mm wide, and 2–6 mm long, that are usually spaced 1–

10 mm apart, in one specimen 40 mm apart (Fig. 7). Trace fossils are straight

or slightly curved, in places disappearing into the bed sole, then reappearing;

some are cut off by other traces. Preserved lengths vary between 10 and 240 

mm, commonly between 50 and 100 mm long. Especially on TSGf 18356 (Fig.

7E, F) sections with swellings pass into sets of densely spaced ridges. Also, on



Acc
ep

ted
 m

an
us

cri
pt

11 
 

TSGf 18356 (Fig. 7D), in particular, strings with different types of swelling are 

seen. Several strings terminate at a swelling (Fig. 7D). 

 

Taxonomic remarks. – This material belongs to a type of trace fossil that 

Buatois et al. (2017) categorised as “Horizontal burrows with serial chambers”. 

As the nature of the swellings remains uncertain, a more neutral term than 

chamber, such as swellings, could be appropriate. Ichnogenera in this 

category include Fustiglyphus, Hormosiroidea, Rhabdoglyphus and 

Halimedides. Buatois et al. (2017) listed additional ichnogenera that may 

belong to this category, but these differ from the material described here. 

Subspherical swellings fundamentally characterise Hormosiroidea and 

Fustiglyphus, whereas heart-shaped swellings characterise Halimedides and 

Rhabdoglyphus. The relationship and synonymies between these ichnogenera 

remain under discussion, but recently any differences have been considered 

best separated at ichnospecies rather than ichnogenus level (e.g., Uchman, 

1998, 1999). 

The Duolbagáisá Formation material adheres well to the diagnosis of 

Fustiglyphus annulatus Vyalov, 1971, of Stanley & Pickerill (1993, p. 61) 

“Unbranched Fustiglyphus bearing spherical-, hemispherical-, heart- or ring-

shaped (either singly or paired) swellings. An individual specimen may be 

comprised entirely of one type of swelling or combinations of two or more”. 

Uchman (1999) advocated the combination Halimedides annulata (Vyalov, 

1971) on account of Fustiglyphus Vyalov 1971, being a subjective junior 

synonym of Halimedides. Although the taxonomic status may still be open to 

modifications (cf., Gaillard & Olivero, 2009; Rodríguez-Tovar et al., 2019) we 

follow the currently most extended practice of Halimedides annulatus (Vyalov, 

1971).  

 

Temporal and spatial distribution of Halimedides.  Halimedides has been most 

commonly reported from the Cretaceous but also from the Jurassic and 
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Cenozoic, all from deep-water settings (see Rodríguez-Tovar et al., 2019). 

Paleozoic occurrences are comparatively rare and have been typically 

reported as Fustiglyphus, with the exception of a record from the Ordovician of 

the Tarim Basin, China (Yang, 1994), from shallow-water deposits (see 

Stanley & Pickerill, 1993).  

There is a moderately rich Ordovician record of Halimedides, whereas that of 

the Cambrian is poor (Table 1). Prior to the material reported here, the 

Cambrian record consisted of a single specimen reported by Jensen (1997) 

from the File Haidar Formation (Mickwitzia Sandstone Member; Cambrian 

Stage 3 or 4, see Nielsen & Schovsbo, 2011, 2015), and a short fragment 

reported as a possible Fustiglyphus by Bjerstedt & Erickson (1989) from the 

Furongian lower Theresa Formation, New York State. A possible further 

Cambrian occurrence is a specimen that Orłowski & Żylińska (2002, fig. 3E) 

reported as Protovirgularia isp., from the Ociesęki Formation of Poland, 

probably Cambrian Stage 4 on the basis of trilobites. The figured specimen is 

similar to the Duolbagáisá material but it is unclear if the swellings consist of U- 

or V-shaped pads of sediments as in Protovirgularia or spherical swellings as 

in Halimedides. From the same lithostratigraphical unit and area, Arthraria isp 

of Stachacz (2016, fig. 17D) also may be more closely comparable to 

Protovirgularia or Halimedides, rather than the dumb-bell shaped Arthraria. 

The trace fossil-bearing horizon with Halimedides described here is 

constrained biostratigraphically to be of probable early Wuliuan age, 

approximately 509 Ma following Cohen et al. (2013, updated 2021) or 505 Ma 

following Sundberg et al. (2020), making this the oldest moderately rich 

material of this ichnogenus to date. Kolesnikov et al. (2015) considered a 

report of Fustiglyphus annulatus from the Ediacaran Basa Formation of the 

Urals (Becker, 2013) to be a pseudofossil, and its biogenicity was doubted also 

by Ivantsov & Zakrevskaya (2018). 
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Ethology. – The swellings in Halimedides have been interpreted as brood 

chambers (Stanley & Pickerill, 1993), reflections of peristalsis (Miller & 

Rehmer, 1982) or used for storage of material that served to attract micro-

organisms that the producer then used as a food source (Gaillard & Olivero, 

2009). This is also consistent with the agrichnial behaviour model by Seilacher 

(1977, 2007). The spacing and density of the swellings have further been 

proposed to indicate levels of bottom-water oxygenation in deep-water material 

(Gaillard & Olivero, 2009). A relationship with oxygen levels has been invoked 

for Halimedides associated with the early Jurassic Toarcian Event in northern 

Spain. Larger specimens with densely spaced swellings are correlated with 

weakly oxygenated facies, and smaller specimens with more sparsely spaced 

swellings are believed to be found in better oxygenated sediments (Lukeneder 

et al., 2012; Rodríguez-Tovar et al., 2019; Fernandez-Martínez et al., 2021).  

The Duolbagáisá Formation Halimedides are found with a moderately rich 

association of different types of traces, and we therefore assume the formation 

of the trace fossils took place in well-oxygenated water, with an unknown 

function of the swellings in Halimedides.  

Five of the specimens of Duolbagáisá Halimedides show portions with 

imbricate ridges, one of these is wider than the central string (Fig. 7E, F). 

These are similar to structures formed by the activity of wedge-shaped palps of 

burrowing molluscs as seen in Protovirgularia (Seilacher & Seilacher, 1994; 

Seilacher, 2007; López Cabrera et al., 2019). Knaust (2022) on the other hand 

describes three ichnospecies of Protovirgularia, and suggests these were most 

likely produced by an arthropod or annelid. Gaillard & Olivero (2009) 

suggested that the Halimedides trace maker could have been a small infaunal 

crustacean, and small infaunal arthropods present an alternative interpretation 

for these ridges, and for the producer of the Duolbagáisá Halimedides. 
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Ichnogenus Palaeophycus Hall, 1847 

Palaeophycus imbricatus (Torell, 1870) 

Fig. 8 

Material. – TSGf 18356 (20 specimens) & TSGf 18453 (13 specimens). 

 

Description. – Straight or gently curving trace fossils preserved along base of 

bed with longitudinal more or less irregular ridges enclosing a shallow, poorly 

defined, central groove. The longest specimens measure 460 mm (TSGf 

18356, Fig. 8A) and 400 mm (Fig. 8B). Additional, shorter specimens are 

scattered on the surfaces (Figs. 2, 3). Generally, the width of the traces is 4–6 

mm. 

 

Remarks. – These traces were formed by an animal burrowing close to the 

interface of sand and mud during which sand was pressed into the mud. Here, 

we follow Jensen (1997) in referring these trace fossils to Palaeophycus 

imbricatus. This type of trace fossil has also been named Halopoa but, for 

reasons outlined in Jensen (1997), this is not used here. For a contrasting view 

see Uchman (1998). 

 

 

 

 

Vertical burrow fragments 

Figs. 5A, D; 7C, E; 8A–C; 9 

Material. – TSGf 18356 (61 specimens) & TSGf 18453 (8 specimens). 

 

Description. – Fragmentary preserved cylindrical burrows with a vertical or 

oblique orientation (Fig. 9). The burrow termination is in the form of a rounded 
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knob of varying appearance: concave, flat or irregular, extending a few 

millimetres from the bed sole (Figs. 5A, D & 9). Some burrows show lateral 

displacement (Fig. 9A), and are connected by horizontal parts with faint, 

longitudinal striations (Fig. 9C). TSGf 18356 shows five smaller specimens in a 

cluster that are preserved slightly more elevated above the bed sole, also 

exposing a distinct concave burrow termination (Fig. 9A–C). The base of some 

traces is surrounded by a flat collar. 

 

Remarks. – These trace fossils are interpreted to represent only a minor 

portion of the entire morphology, which is mostly unknown and probably a 

heterogenous grouping. Some could be portions of a plug-shaped trace fossil 

such as typical forms of Bergaueria, but none of the specimens shows a clear 

basal portion. A single specimen shows a faintly preserved connection to a 

horizontal portion suggesting a U-shaped burrow (Fig. 9C), but it cannot be 

deduced that this was so for all the vertical traces. 

 

 

Discussion 
Within the siliciclastic Upper Member of the Duolbagáisá Formation, where 

skeletal fossils are known from only a few horizons, trace fossils provide the 

most diverse evidence for the presence of metazoans, documenting a wide 

range of behaviours. Trace fossils rarely permit the producer to be identified 

with any precision, and phylogenetically unrelated producers are known to 

produce morphologically indistinguishable traces. One exception to this rule is 

trace fossils produced by arthropods where morphologically informative ’finger-

prints’ can often be identified. Trilobites are known from the approximate 

middle part of the unit, with large holmiids having cephala wider than 7 cm 

identified as Kjerulfia n.sp., associated with Elliptocephala n. sp. (Ebbestad et 
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al., 2017; see also Palacios et al., 2020, fig. 3). Large Rusophycus and 

Cruziana from the upper part of the member (Fig. 10A herein; McIlroy & 

Brasier, 2017, Supplementary figures) are evidence for the continued presence 

of large arthropods. Cruziana tenella documents the presence of smaller 

arthropods. Among the ichnotaxa on the two slabs described above, 

Bergaueria sucta was likely produced by a cnidarian (Fig. 5B).  

 

From the early Cambrian section of the Upper Member of the Duolbagáisá 

Formation, Psammichnites gigas (Fig. 10B) and Syringomorpha nilssoni (Fig. 

10C) are figured here for the first time. Psammichnites gigas was made by an 

animal moving horizontally through the sediment, with a meniscate structure 

suggesting manipulation of sediment. A sinusoidal furrow on the top of the 

trace fossil, not seen in the figured material, has been interpreted as formed by 

a snorkel-like organ keeping the animal in contact with the sediment surface 

(e.g., Seilacher, 2007). On the Digermulen Peninsula, the closely related 

Psammichnites gigas arcuatus (traditionally Plagiogmus arcuatus, see 

Mángano et al., 2022) is well represented in the Lower Member of the 

Duolbagáisá Formation (Banks, 1970; McIlroy & Brasier, 2017). 

Syringomorpha nilssoni, a vertically oriented spreite burrow formed by the 

progressive displacement of a J-shaped tube (Fig. 10B), is present through 

much of the Upper Member (McIlroy & Brasier, 2017). It does not show the 

type of producer-specific ’finger-prints’ found in Rusophycus and Cruziana, and 

the only information of its producer is in the width of the causative burrow (1–2 

mm). This ichnospecies does, however, have both a restricted stratigraphical 

range and a palaeogeographical distribution making it plausible that it was 

produced by one or a limited number of producers (Jensen et al., 2013). The 

producer likely was vermiform and a life-style as biofilm harvester has been 

suggested to explain its presence in sediments likely impoverished in organic 

material (Noffke et al., 2021).  
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The association of trace fossils from the Upper Member of the Duolbagáisá 

Formation shows similarity to the slightly older Mickwitzia Sandstone Member 

of southern Sweden. This is probably not only because of the similarity in the 

evolutionary stage in trace fossil development and broadly comparable 

environments, but also from similar trace producers.  

Conclusions 
The trace fossils described here from the Upper Member of the Duolbagáisá 

Formation, on the Digermulen Peninsula, Finnmark, northern Norway, expands

our knowledge of Cambrian Series 2 to Miaolingian trace fossils in Baltica. This

includes the first moderately rich Cambrian material of Halimedides and one of

the earliest records globally of this ichnogenus. Several specimens of the rare 

Bergaueria sucta are recorded. Syringomorpha nilssoni is restricted to the 

early Cambrian part of the member.
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Figure captions 

Figure 1. (A) outline of Scandinavia with the study area marked by a square on 

the northern tip of mainland Norway. Caledonides shaded. (B) geology of the 

Digermulen Peninsula showing location of the trace fossils described herein.

(C) log of the 394 m-thick Upper Member of the Duolbagáisá Formation,

overlain by the Kistedalen Formation. Acritarch zonation following Palacios et

al. (2020), S–F corresponds to the Skiagia ornata–Fimbriaglomerella

membranacea Zone. (D) log of the approximately 70 m-thick uppermost

parasequence of the Upper Member, of the Duolbagáisá Formation, the

extension of which is indicated by a vertical line in (C). The base of the

https://doi.org/10.1130/G46913.1
https://doi.org/10.1016/0191-8141(86)90061-1
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Miaolingian Series is found approximately 17 m stratigraphically below the 

uppermost parasequence on the basis of acritarchs.  

 

Figure 2. (A) slab TSGf 18356. (B) line drawing of (A), showing distribution of 

more prominent trace fossils; ichnotaxa are colour coded. Position of illustrated 

specimens shown with figure number. Scale bars = 50 mm. 

 

Figure 3. (A) slab TSGf 18453. (B) line drawing of (A), showing distribution of 

more prominent trace fossils; ichnotaxa are colour coded. Position of illustrated 

specimens shown with figure number. Scale bars = 50 mm. 

 

Figure 4. Transition from the Upper Member of the Duolbagáisá Formation to 

the Kistedalen Formation in the Breidvika valley. The black arrow points to the 

site where the Halimedides-bearing slabs were recovered. The white arrow 

shows the level at which this bed crops out. Location is marked by a red star in 

Figure 1B. The purple and white bar shows the extension of parasequence 9 

and equals 70 metres; additionally, it indicates the alternation between the pink 

and white quartzite layers. 

 

Figure 5. Bergaueria sucta. (A) specimen on TSGf 18356 showing rotational 

movement. Also seen is an unidentified truncated vertical trace fossil. (B) 

artistic reconstruction of trace maker. (C, F, G) specimens on TSGf 18453 

exhibiting lateral movement. (D) truncated circular specimen and smaller 

unidentified truncated vertical trace fossil on TSGf 18356. (E) inclined form on 

TSGf 18453. Scale bars = 10 mm. 

 

Figure 6. Cruziana tenella and Cochlichnus. (A, B) TSGf 18356, short Cruziana 

tenella, scale bars = 1 mm. (C) Cruziana tenella including portions showing 

repeated Rusophycus elements. Scale bar = 10 mm. TSGf 18454. D) 

Cochlichnus isp., scale bar = 10 mm. TSGf 18356. 
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Figure 7. Halimedides annulatus. (A) overview showing several overlapping 

specimens with heart-shaped swellings on TSGf 18356. (B-C) varying 

appearance of swellings on TSGf 18356, ranging from heart-shaped to 

hemispherical. (D) cluster of traces on TSGf 18453 terminating within the bed 

sole with distinct spherical swellings. (E) extended trace with marked ridges 

and heart-shaped swellings on TSGf 18356. (F) detail of (E). Scale bars = 10 

mm. 

 

Figure 8. Palaeophycus imbricatus on TSGf 18356. (A) slightly curved 

specimen terminating at the bed sole. (B, C) straight and curved specimens. 

Scale bars = 10 mm. 

 

Figure 9. Unidentified vertical trace fossils on TSGf 18356. (A, B) typical 

appearance showing horizontal fracture. Evidence for truncation is seen in (A). 

(C) specimen connected to horizontal portion. Scale bars = 10 mm. 

 

Figure 10. Trace fossils from the Upper Member, Duolbagáisá Formation. (A) 

field photograph of Cruziana inferred to originate from the same bed as 

Halimedides. Scale bar = 10 mm. (B) Psammichnites gigas from the middle 

part of the Upper Member. Scale bar = 50 mm. TSGf 18456. (C) field 

photograph of Syringomorpha nilssoni from the middle part of the Upper 

Member showing characteristic successive truncation along the lower part of 

the spreite. Scale bar = 10 mm. 
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Table 1. Cambrian and Ordovician Halimedides 
Original identification Unit and geography Chronostrat. Primary reference N Dimensions (mm) Comments 
F. isp. File Haidar Fm., Sweden Cam. Stage 3-4 Jensen ‘97 1 St. 2, Sw. 3  
Protovirgularia isp. Ocieseki Fm., Poland Cam. Stage 4 Orłowski & Żylińska ‘02 1 St. 3, Sw. 9 Possible Halimedides 
H. annulata Duolbagáisá Fm, Norway Miaol. (Wuliuan) This report 370  St. 2-3, Sw. 7-8  
F. ? Lower Theresa Fm., New York Furongian Bjerstedt & Erickson ‘89 1 St. 2, Sw. 4  
F. annulatus Heituao Fm, Tarim Basin, China L.-M. Ord. Yang ‘94 ? St. 3.5-5, Sw. 6-10 Two figured specimens 
F. annulatus Georgian Bay Fm., Ontario U. Ord. Stanley & Pickerill ‘93 5 St. 3-4, Sw. 4-7  
F. annulatus Trenton Group, Ontario U. Ord. Stanley & Pickerill ‘93 1 St. 1, Sw. 6-7  
F. isp. Letna Fm, Czech Republic U. Ord. (Caradoc) Mikulas ‘98 1 St. 3, Sw. 6  
?R. annulatus Kosov Fm., Czech Republic U. Ord. (Hirnant.) Mikulas ‘92 25 St. 6-12, Sw. 9, 14 Swellings from images 
R. isp, Arnheim Fm (a.o.), Ohio U. Ord. Osgood ‘70 10 St. 2-3, Sw. 5-6 Measures from figures 

Abbreviations: F., Fustiglyphus; H., Halimedides; R., Rhabdoglyphus; St. String; Sw. Swelling 
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