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Abstract. A modification of the Ekman layer that is able to systematically account for the effects of curvature of the velocity 
fluctuation streamlines is developed, using the description of turbulent motions. These effects are accounted for through the 
average vector product of the velocity fluctuations and the local curvature vector of their streamlines at each flow field point. It is 
shown that this approach enables quantifying the impact of several phenomena (such as the Stokes drift or the incessant generation  
of vortices with a prevailing orientation of rotation, intrinsic to surface-driven geophysical flows) on the formation of the Ekman 
layer. The outcome of the suggested modification is compared with the relevant data measured in the Drake Passage.  
 
Key words: Ekman layer, turbulence, modelling. 

 
 

INTRODUCTION 
 
The Ekman layer velocity data have shown three types 
of systematic deviations from the situation described by 
the classical Ekman theory (Ekman 1905). The angle 
determined between the surface wind stress and the 
surface drift velocity differs in general from the angle 
obtained by the classical Ekman solution (Cushman-
Roisin 1994). The observed current seems turning  
less with depth than predicted by the Ekman theory 
(Weller 1981; Price et al. 1986, 1987; Richman et al. 
1987; Wijffels et al. 1994; Chereskin 1995; Schudlich & 
Price 1998; Chereskin & Price 2001; Lenn & Chereskin 
2009), and a large component of shear in the downwind 
direction near the surface shows no turning (Richman  
et al. 1987). Attempts have been made to overcome the 
inconsistency between the recorded data and Ekman 
theory by using numerical modelling including the depth-
varying eddy viscosity (Madsen 1977; Huang 1979) 
and by complementing the physical background of the 
Ekman layer description with dynamic processes like 
the buoyancy flux, Stokes drift, etc. (Coleman et al. 
1990; Price & Sundermeyer 1999; Zikanov et al. 2003). 

In the current paper the Ekman boundary layer is 
discussed from the point of view of a modified model 
based on the turbulence mechanics suggested by Heinloo 
(2004), called the theory of rotationally anisotropic 
turbulence (the RAT theory). The RAT theory comple-
ments the conventional turbulence mechanics by 
accounting for the curvature effects of the velocity 
fluctuation streamlines on the formation of the average 
flow properties. The complementation allows for a 
systematic description of the role of some phenomena 

intrinsic to the flows with nonzero vorticity in the 
average flow velocity properties, disregarded within the 
conventional turbulence mechanics. When applied to 
the Ekman layer modelling, the curvature effects result 
in the following. While the classical Ekman model 
explains the vertical profiles of velocity depending on 
the wind stress and on one parameter specifying the 
Ekman depth, the applied RAT theory suggests that 
the vertical profiles of velocity are formed under the 
impact of two conditions at the surface (one of which 
determines the wind stress and the other is interpreted as 
reflecting the wave conditions) and governed by three 
parameters with the dimension of length. One parameter 
describes the effect of the Stokes drift (Phillips 1977) 
and two other parameters characterize the vertical profile 
of velocity below the layer influenced by the Stokes 
drift. It is shown that the modified model embraces  
the above-discussed deviations of the observed velocity 
distributions from the classical Ekman solution by one 
single analytical solution and agrees with data on the 
Ekman current measured in the Drake Passage (Lenn & 
Chereskin 2009). 
 
 
MODEL  SETUP 
Theoretical  background 
 
We start the discussion of the suggested modification of 
the classical Ekman model with a short description of 
the theoretical background of the applied RAT theory 
(Heinloo 2004). The key quantity of this theory is the 
gyration vector of the turbulent flow field Ω  (Fig. 1), 
defined by  
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.′= ×v kΩ   (1) 

 
In Eq. (1) (and henceforth) the angular brackets denote 
statistical averaging, ′ = −v v u  denotes the fluctuating 
constituent of the flow velocity, v  is the actual flow 
velocity, =u v  and 
 

s
∂

=
∂
ek   (2) 

 
is the local curvature vector of the ′v  streamline.  
In Eq. (2) v′ ′=e v  ( | |)v′ ′= v  is the unit vector in  
the direction of ′v  and s  is the length of the ′v  
streamline. The norm of the curvature vector k  can be 
expressed as 
 

,k
s
φ∂

= =
∂

k   (3) 

 
where φ∂  denotes the turn of ′v  over the distance .s∂  
Using Eqs (2) and (3), we can rewrite Eq. (1) in the 
form 
 

d ,
dt
φ

= nΩ   (4) 

 
where k= ×n e k  is the unit vector in the direction of 
Ω  and d d .t v sϕ ϕ′≡ ∂ ∂  From the definition of Ω  it 
follows that if there is a prevailing direction of the turn 
of the velocity fluctuation at a certain location, then Ω  
does not vanish at this location. Introduction of this 
variable complements the kinematic characterization of 
the turbulent motion and makes it possible to describe 
turbulent flow fields in a much more detailed manner 
compared to classical approaches. Turbulent flows in 
which 0Ω ≠  are called rotationally anisotropic. 
 
 

 
 
Fig. 1. Representation of the flow field: u, average velocity; 
v′, velocity fluctuation; k, curvature vector of the velocity 
fluctuation streamline. 

Consider now the dynamical flow characteristic M  
corresponding to ,Ω  defined as 

 
,′= ×M v R   (5) 

 
where 2k=R k  denotes the local curvature radius-
vector of the velocity fluctuation streamline. Substitution 
of the latter relation into Eq. (5) gives 
 

2 2 d ,
d

R R
t
φ′= × =M v k   (6) 

 
where | | 1 .R k= =R  From Eq. (6) it follows that the 
quantity M  has the meaning of the average angular 
momentum with 2R=R k  in the role of the random 
moment arm. The defined Ω  and M  allow us to 
introduce the effective moment of inertia J  as follows: 
 

.J=M Ω   (7) 
 
The quantity J  determines the characteristic spatial 
scale of the rotationally anisotropic turbulence constituent 
contributing to Ω  and .M  It is easy to see that for  
the turbulent flows with 0Ω ≠  the turbulence energy 
(understood here as the energy of velocity fluctuations) 

21
2K v′=  can be naturally decomposed as follows: 

 
01 ,

2
K K= ⋅ +M Ω   (8) 

 
where the first term on the right side describes the 
energy of the rotationally anisotropic part of motion  
and 0 1

2 ,K ′ ′= ⋅M Ω  where ′ ′= × −M v R M  and 
,′ ′= × −v kΩ Ω  is the residual part of the turbulence 

energy due to the non-orientated fluctuations. Notice that 
for the non-vanishing M  and/or ,Ω  the energy described 
by the first term on the right side of Eq. (8) does not 
vanish. Therefore, it is natural to expect that systematically 
anisotropic local rotation characterized by Ω  contributes 
to the dynamical and energetic processes and thus plays a 
role in forming the average properties of the flow. 

The description of turbulent flows with ,M  0Ω ≠  
should be based on the conservation laws of average 
momentum, angular momentum M  and energy 0.K  
The component form of the balance equations expressing 
the first two of these laws can be expressed as 
 

,
d ,
d i ij j iu f

t
ρ σ ρ= +   (9) 

 

,
d ,
d i ij j ijk jk iM m e m

t
ρ σ ρ= − +   (10) 

 
where , , 1, 2,3,i j k =  ijke  is the permutation symbol, ρ  
is (constant) density of the medium (water), ijσ  denotes 

v′ 

v′ streamline 
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the components of the stress tensor, if  denotes the 
components of the density of body forces per unit 
mass, ijm  denotes the components of the moment-
tensor describing the diffusion of ,M  im  denotes the 
components of the density of body moments other 
than described by the first two terms on the right side 
of Eq. (10) and the index after the comma denotes 
differentiation along the respective coordinate and 
Einstein summation is assumed. In essence, Eq. (9) is 
the averaged Navier�Stokes (Reynolds) equation (with 
an asymmetric turbulent stress tensor) and Eq. (10) is 
the averaged equation obtained via the vector 
multiplication of the equation for ′v  (derived from the 
Navier�Stokes equation) from the right by .R  The 
technical details of the derivation of Eqs (9) and (10) 
can be found in Heinloo (2004). 

The version of the RAT theory utilized in the current 
paper particularizes Eqs (9) and (10) by applying the 
standard closure technique (Heinloo 2004). In particular, 
the applied closure specifies the vector σ  with components 

ijk jke σ  in Eq. (10) as 
 

4 ( ),γ= −ωσ Ω   (11) 
 
in which 1

2= ∇×ω u  is the vorticity and γ  is called the 
coefficient of rotational viscosity. The coefficient γ   
in Eq. (11) couples the Ω -field to the vorticity field. 
Note that this coefficient allows for a more detailed 
description of the flow properties compared to classical 
approaches where the viscosity is characterized by the 
turbulent (eddy) viscosity coefficient. Equation (11) 
suggests that whenever there is vorticity in the field, it 
results in generation of nonzero Ω  and vice versa. 

 
The  model  setup 
 
The modification of the classical Ekman model dis-
cussed below utilizes Eqs (9) and (10) within the 
closure introduced in Heinloo (2004). We consider the 
upper layer of the ocean in the Northern Hemisphere 
with a constant water density in the right-hand Cartesian 
coordinate system ( , , ),x y z  with the coordinate z  
directed downwards and 0z =  at the ocean surface. The 
ocean is forced by the constant wind stress ( , 0,0)τ= −τ  
directed along the -x axis ( 0),τ >  and 
 

x y[ ( ), ( ), 0].u z u z=u   (12) 
 
For the resulting flow in the coordinate system rotating 
with the angular velocity, 0 (0,0, 2),f= −ω  where f  
is the Coriolis parameter, and for the applied closure, 
Eqs (9) and (10) can be written as follows: 

2
0

2( ) 2 2 0,
z

µ γ γ ρ∂
+ + ∇× + × =

∂
u Ω u ω   (13) 

 
2

2 4( ) 2 0.J
z

ϑ γ κ γ∂
− + + ∇× =

∂
Ω Ω u   (14) 

 
Equations (13) and (14) differ from the respective 
equations derived in Heinloo (2004) by the presence of 
the Coriolis term in Eq. (13). Here (in addition to J  and 
γ  explained above) µ  is the coefficient of turbulent 
shear viscosity quantifying the transfer of energy from 
the average flow to the energy of the non-orientated 
turbulence constituent 0 ,K  κ  is the coefficient quantifying 
the energy transfer from 1

2 ⋅M Ω  to 0K  and ϑ  is the 
coefficient of diffusion of the angular momentum .M  It 
follows from Eqs (13) and (14) that only the horizontal 
components of Ω  are coupled to the flow velocity, 
therefore, similar to the flow velocity (Eq. (12)), we 
shall assume that [ ( ), ( ),0].x yz zΩ Ω=Ω  For 0γ =  
Eq. (13) reduces to the equation of the classical Ekman 
model and Eq. (14) to an additional equation interpreted 
as describing the effect of the Stokes drift. In what 
follows we assume that 0,γ ≠  consequently, the effect 
of the Stokes drift is coupled with the motions described 
by the classical Ekman model. 

The solution of Eqs (13) and (14) is assumed to 
satisfy the following boundary conditions: 
 

lim , 0,
z→∞

=u Ω   (15) 

 

0

( ) 2 (0) , (0) (0).
z

c
z

µ γ γ
=

∂
+ + ⋅ = =

∂
u Ω Ω ωτE   (16) 

 
In Eqs (16) E is the Levi-Civita tensor with components 

,ijke  1
2= ∇×uω  is the vorticity and c  is a constant, 

0 1.c< <  The second condition in Eqs (16) simply 
means that Ω  and ω  are collinear at the boundary 

0.z =
 
Consequently, the first condition in Eqs (16) can 

be rewritten as 
 

s
0

,
zz

µ
=

∂
= −

∂
u τ   (17) 

 
where s (1 ) .cµ µ γ µ= + − ≥  All flow-specific coefficients 
as well as J  in Eqs (13) and (14) are treated as constants. 
 
 
DISCUSSION 
Solution  for  the  flow  velocity 
 
Defining x yu u iu= +!  and x y ,iΩ Ω Ω= +!  where i  is the 
imaginary unit, from Eqs (13)�(17) we have 
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2

2( ) 2 0,u i i f u
zz
Ωµ γ γ ρ∂ ∂

+ + + =
∂∂

!! !   (18) 

 
2

2 4( ) 2 0,uJ i
zz

Ωϑ γ κ Ω γ∂ ∂
− + + =

∂∂

! !!   (19) 

 

lim , 0,
z

u Ω
→∞

=!!
0z s

u
z

τ
µ=

∂
= −

∂
!  and 

0

(0) .
2 z

c ui
z

Ω
=

∂
=

∂
!!  (20) 

 
The solution of Eqs (18)�(20) for u!  is expressed as 

 

1 2( ) ( ),u u z u z= +! ! !   (21) 
 
where 
 

1 1 1(0)exp( )u u zλ=! !  and 2 2 2(0)exp( ).u u zλ=! !   (22) 
 
In Eq. (22), 1λ  and 2λ  are the roots of the biquadratic 
equation 
 

4 2
2 2 2 2

1 2

1 1 0,i iλ λ
 

− − − = 
 " " " "

  (23) 

 
in which 
 

ef
2

( )1 14 ,
( )J

µ γ κ
ϑ µ γ

+
=

+"
 2 2

ef1 2

1 1 ,f fρ ρ
µ γ µ

= < =
+" "

  (24) 

 
and 1

ef ( ) .µ µ γ κ γ κ −= + +  Only the values of 1λ  and 
2λ  with negative real parts are compatible with the 

boundary conditions stated in Eq. (15) and are applied 
hereafter. The velocity constituents 1(0)u!  and 2 (0)u!  are 
specified as 
 

1 2
1 2 2

s 1 2

exp ( 4)
(0)

B iu λ λ πτ
µ λ λ

− +
=

−
!   (25) 

 
and 
 

2 1
2 2 2

s 1 2

exp ( 4)
(0) ,

B iu λ λ πτ
µ λ λ

−
=

−
!   (26) 

 
where 1

s 2 ef( ) 0.B µ µ −= >" "  
Equations (21)�(26) represent the vertical dis-

tribution of the average flow velocity depending on 
1

s ,τµ −  1
s efµ µ −  and on three characteristics of turbulence 

properties of the medium 2 1< <" " "  with the dimension 
of length. 

Properties  of  the  vertical  structure  of  velocity 
 
Consider the solution of Eq. (23) for 2

1λ  and 2
2λ  in the 

following representation: 
 

2 2
1 1 exp( )iλ λ ψ=  and 2 2

2 2 exp[ (3 2 )],iλ λ π ψ= −   (27) 

 
where 0 2,ψ π≤ ≤  2 2

1 1| | | |λ λ=  and 2 2
2 2| | | | ,λ λ=  while 

1
1 2 2| || | ( )λ λ −= ""  and 1 2| | | | .λ λ>  Using Eq. (27), we 

have for 1λ  and 2λ  
 

1 1 exp( )iλ λ ϕ= −  
 
and 
 

2 2 2exp[ (3 4 )] exp[ ( 4)],i iλ λ π ϕ λ ϕ π= − = − − +  

 
where 0 2 4.ϕ ψ π≤ = ≤  When denoting the e-folding 
scales for 1u!  and 2u!  by 
 

11
1 1

1 1 0
Re cos

h
λ λ ϕ

= − = >  

 
and 
 

21
2 2

1 1 0,
Re cos( 4)

h
λ λ ϕ π

= − = >
+

 

 
and the respective rotation scales of 1u!  and 2u!  by 
 

12
1 1

1 1 0
Im sin

h
λ λ ϕ

= − = >  

 
and 
 

22
2 2

1 1 0,
Im sin( 4)

h
λ λ ϕ π

= = >
+

 

 
the expressions for 1u!  and 2u!  in Eq. (22) can also be 
rewritten as 
 

1 1
11 12

2 2
21 22

(0)exp exp ,

(0) exp exp .

z zu u i
h h

z zu u i
h h

   
= − −   

   

   
= −   

   

! !

! !

              (28) 

 
In the following we interpret the velocity constituents 

1u!  and 2u!  as the Stokes drift and the Ekman drift velocity 
constituents, respectively. 
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Let us emphasize the following properties of the 
solution given by Eqs (21) and (28). 
1. For 0= cγ =  and 

1 1
2 2

E (2 ) ( ) ,fµ ρ −<< =" "  where 
E"  is the Ekman depth in its classical sense,  

we have 1
1 ,λ −= −"  1

2 E( 1) ,iλ −= − "  1 (0) 0,u =!  
1

2
2 (0) ( ) exp( 4),u f iτ ρ µ π−=!  21 22 Eh h= = "  and 

the solution given by Eqs (21) and (28) reduces to 
the classical solution for the Ekman boundary layer 

 

E E

exp exp .
4

z zu i
f
τ π
ρ µ

    
= − +    

     
!

" "
  (29) 

 
2. The integral volume transport in the Ekman layer, 
 

0

,iudz
f
τ
ρ

∞

=∫ !  

 
coincides with the transport following from the 
classical Ekman�s theory. 

3. Due to 
 

1 2
s 1 2

1 exp ( 4)(0) (0) (0) ,B iu u u τ π
µ λ λ

+
= + = −

+
! ! !  

 
the angle between the surface wind stress and the 
surface drift velocity in general differs from 4π  
predicted by the classical Ekman solution. In 
particular, for E<<" "  (considered as the most 
typical) we have s(0) (1 exp( 4))u B iτ µ π≈ − +! "  
determining the angle between the surface wind 
stress and surface drift velocity between 0 (the 
Stokes drift situation) and 4π  (the classical Ekman 
situation). 

4. The e-folding scale of 2u!  exceeds the e-folding 
scale of 1u!  21 11( ),h h>  i.e., the characteristic vertical 
extent of the Ekman drift layer is larger than the 
characteristic vertical extent of the Stokes drift layer. 

5. Due to the opposite signs of the arguments of  
the exponent 12i z h−  and 22i z h  in Eq. (28), the 
velocity constituents 1u!  (the Stokes drift velocity 
constituent) and 2u!  (the Ekman drift velocity 
constituent) rotate with depth in opposite directions. 

6. While the e-folding scale of the Ekman drift velocity 
constituent 2u!  exceeds its rotation depth scale 

21 22( ),h h>  the rotation scale of the Stokes drift 
velocity constituent 1u!  exceeds its e-folding scale 

11 12( ).h h<  
7. While the scales 21h  and 11h  both decrease, 22h  and 

12h  increase for decreasing ϕ  (so that for 0ϕ =   
we have 12 22 ).h h=  Therefore, the properties of  
the Ekman and Stokes layers are in general 
interdependent. 

Although the discussed solution was derived for the 
Northern Hemisphere, it holds also for the Southern 
Hemisphere (where the y-axis is reversed to form the 
left-hand coordinate system ( , , )).x y z  

 
Comparison  with  the  observed  data 
 
Properties 1�7 demonstrate that the derived solution  
is sufficiently flexible to mimic the observed velocity 
distributions (cited in the Introduction) that diverge 
from the vertical structure predicted by the classical 
Ekman solution. In agreement with Cushman-Roisin 
(1994), the modification includes the situation with the 
angle between the wind and the surface drift velocity 
vectors different from 4.π  Figure 2 exemplifies this 
situation on the velocity spiral of the non-dimensional 
velocity 1

s ( ) uµ τ − !"  calculated for 1
s ef 0.07,µ µ − =  

10 m,="  1 60 m="  and 2 50 m.="  The surface 
velocity is veering by 18.3° to the right of the wind 
direction. On the basis of the observed data it has been 
stated in several investigations (Weller 1981; Price et al. 
1986, 1987; Wijffels et al. 1994; Chereskin 1995; 
Schudlich & Price 1998; Price & Sundermeyer 1999; 
Chereskin & Price 2001; Lenn & Chereskin 2009)  
that the rotation scale of velocity profiles exceeds the  
e-folding scale of the velocity norm. The suggested 
 
 

  
Fig. 2. Velocity spiral for the modelled non-dimensional 
velocity µs(τ")−1ũ, corresponding to µsµef

−1 = 0.07, " = 10 m, 
"1 = 60 m and "2 = 50 m (Vx = µs(τ")−1Re ũ and Vy = µs(τ")−1Im ũ). 
The velocity modulus decreases e times at a depth of 15 m and 
the velocity vector turns by 1 rad at a depth of 24 m relative to 
their values at the surface. 
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modified solution includes this effect. As an example, in 
case of the velocity spiral shown in Fig. 2, the e-folding 
and the rotation scales of the velocity are 15 and 24 m, 
respectively. 

Figure 3 presents the data of the flow velocity relative 
to the reference level at 98 mz =  (circles) collected in 
the Drake Passage (adopted from Lenn & Chereskin 
2009) together with the corresponding velocity 
distributions calculated from Eqs (21) and (28) (solid 
curves) and the Ekman solution calculated from Eq. (29) 
(dashed curves). The modelled velocity distribution is 
calculated for 1

s ef 0.77,µ µ− =  14 m,="  1 32 m,="  
2 31 m,="  1 1

s 0.115 sτµ − −=  and the Ekman velocity 
distribution for E 44 m,="  

1
2 1( ) 0.032 m s .fτ ρ µ − −=  

It can be seen in Fig. 3 that, firstly, the modified 
solution fits better the observed data than the Ekman 
solution. Secondly, the e-folding scale of the Ekman 
layer E( )"  predicted by the Ekman solution exceeds the 
characteristic e-folding scale 1 2(max{ , })" "  predicted by 
the modified solution. Thirdly, the classical Ekman 
solution matches the observed data in Fig. 3 rather well, 
therefore the rotation scale of the vertical distribution of 
velocity is close to its e-folding scale. This conclusion, 
however, contradicts Lenn & Chereskin (2009), where, 
based on the same data set, the rotation scale of the 
vertical distribution of velocity has been estimated to 
exceed its e-folding scale by 2�3 times. The indicated 
contradiction follows from a specific feature of Lenn & 
Chereskin (2009) analysis. Their analysis was applied to  
 
 

 
 
Fig. 3. The depth-dependence of the velocity components 
Re(ũ � Ũ) and Im(ũ � Ũ), where Ũ is the velocity at the 
reference level z = 98 m, calculated according to the suggested 
model for µsµef

−1 = 0.77, " = 14 m, "1 = 32 m, "2 = 31 m,  
τ µs

−1 = 0.115 s−1 (solid curves) and according to the Ekman 
model for "E = 44 m, τ (ρ f µ)−½ = 0.032 m s−1 (dashed curves) 
compared with data (circles) adopted from Lenn & Chereskin 
(2009). 

the velocity data from which the velocity at the assumed 
reference level of 98 mz =  had been subtracted. The 
resulting velocity equals to zero at the selected reference 
level. As a consequence, the e-folding scale becomes 
dependent on the reference level depth and no more 
characterizes the underlying physical process. 
 
 
CONCLUSIONS 
 
The Ekman layer studies (Huang 1979; Davis et al. 
1981; Weller 1981; Price et al. 1986, 1987; Richman et 
al. 1987; Weller et al. 1991; Cushman-Roisin 1994; 
Wijffels et al. 1994; Chereskin 1995; Schudlich & Price 
1998; Price & Sundermeyer 1999; Chereskin & Price 
2001; Lenn & Chereskin 2009) have shown that the 
observed vertical distributions of velocity in the ocean 
Ekman layer often deviate from the distribution predicted 
by the Ekman theory. The suggested modified Ekman 
model explains the observed deviations from the point 
of view of the turbulence mechanics in Heinloo (2004) 
accounting for the curvature effects of the velocity 
fluctuation streamlines on the formation of the average 
flow properties. The curvature effects are accounted  
for through the average vector product of the velocity 
fluctuations and the local curvature vectors of their 
streamlines at all points of the flow field. This approach 
makes it possible to systematically account for phenomena 
(such as the Stokes drift or the generation of rotationally 
anisotropic part of the motion) affecting the structure of 
the Ekman layer. It is shown that the additional included 
effects can explain the observed deviations from the 
Ekman theory and agree with the data measured in the 
Drake Passage adopted from Lenn & Chereskin (2009). 
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Modifitseeritud  Ekmani  kihi  mudel 
 

Jaak Heinloo ja Aleksander Toompuu 
 

On esitatud modifitseeritud klassikaline Ekmani kihi mudel. See arvestab kiiruse pulsatsiooni voolujoonte kõverusest 
tulenevat mõju keskmise kiiruse väljale ja selle väljundiks on analüütiline kiiruse vertikaalse jaotuse valem. On 
näidatud, et tuletatud valem kirjeldab olukordi, kus tuule kiiruse ja pinnahoovuse kiiruse vektorite vaheline nurk 
erineb nurgast, mis tuleneb klassikalisest Ekmani lahendist, ning kus kiiruse e-kordse kahanemise sügavuse mastaap 
erineb kiirusvektori pöörlemissügavuse mastaabist. Mudelist tulenevat kiiruse vertikaalset jaotust on võrreldud 
Drake�i väinas mõõdetud kiiruse andmetega, mis on avaldatud Lenni ja Chereskini poolt 2009. aastal. 
 
 

 
 

 


