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An early Cambrian greenhouse climate
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The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of
animal life. However, sea temperatures—a key component of the early Cambrian marine environment—remain
unconstrained, in part because of a substantial time gap in the stable oxygen isotope (d18O) record before the
evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the
potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust d18O
signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S)
between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval
evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for
this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Meso-
zoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental
controls on Cambrian animal diversification.
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INTRODUCTION
The oxygen isotope (d18O) composition of fossil biominerals is one of
themost widely used proxies for investigating ancient environments and
is particularly useful as a deep time paleothermometer (1). The most
widespread d18O records come from analyses of calcium carbonate
(2–4) and calcium phosphate (5–7) marine shelly fossils. However, al-
though a near-continuous d18O record exists back to the Early Ordovi-
cian epoch, 485 million years (Ma) ago (1, 6), there is a substantial early
Phanerozoic data gap that covers the interval of theCambrian explosion,
when the oldest identifiable fossils of most of the animal phyla appear in
the rock record (8). This gap exists because phosphatic euconodontswith
diagenetically robust hyaline crown tissues (9) are absent below upper-
most Cambrian strata, whereas most calcareous fossils in these rocks
have been demonstrably diagenetically altered (1, 4). An alternative
source of Cambrian oxygen isotope data is therefore needed to quantita-
tively assess the state of the early Cambrian climate, which has so far only
beenqualitatively interpreted as a greenhouse interval (8, 10, 11).Wepro-
pose that “small shelly fossils” (SSFs) are a potential new source of d18O
data that could help constrain Cambrian marine environments.

SSFs comprise the skeletal elements of a diverse range of early bio-
mineralizing animals that produced siliceous, calcareous, or phosphatic
skeletons. Althoughmany SSFs are preserved in secondary (diagenetic)
phosphate (12), some are suggested to retain an original biophosphatic
composition (13). To avoid sampling secondarily phosphatized speci-
mens, we targeted fossils from the Comley Limestones, Shropshire, UK
(fig. S1). These rocks are notable for yielding arthropods with limited
(and very early) secondary phosphatization of soft anatomy but lack
evidence for phosphatic replacement of original shell material (14).
The Comley Limestones were deposited under normal marine condi-
tions beneath the well-mixed waters of a shallow sea (15), approximate-
ly 65°S to 70°S on the peri-Gondwanan microcontinent Avalonia (16)
between 514.45 ± 0.36 and 509.10 ± 0.22 Ma ago (17).
To ensure that isotope data recovered from the phosphatic SSFs re-
flect a Cambrian paleoenvironmental signal rather than later diagenetic
conditions, we restricted our analyses to taxa known to have produced
phosphatic skeletons based on phylogenetic and geological criteria (13).
These included linguliformean brachiopods, which have well-known
extant relatives, and the robust, thick-walled benthic tubularmicrofossil
Torellella. We assembled taxon-specific samples for bulk isotope anal-
ysis comprising tens to a few hundred individual specimens and
separated them according to their visual quality of preservation (fig.
S2). Representative specimens from each bulk subset were subjected
to a rigorous protocol to assess the preservation of biogenic phosphate.
We could consistently distinguish subsets of pristine and altered SSFs
using optical microscopy, confirmed by combining high-resolution
scanning electron microscopy (SEM) and energy dispersive x-ray
(EDX) spectroscopy to assess micro- and ultrastructural preservation
and the distribution of diagenetically sensitive elements (see Materials
andMethods). In particular, brachiopod specimens taken from pristine
subsets were found to have compact laminae comprising phosphate
spherules tens of nanometres in diameter, whereas the compact lami-
nae of specimens taken from altered subsets were recrystallized as
micrometer-scale phosphate prisms (Fig. 1). To help define a d18O
diagenetic gradient, we also analyzed an early diagenetic phosphate
hardground, which likely formed at or close to the sediment-water
interface, soon after deposition, from pore waters in communication
with the overlying ocean (see Materials and Methods).
RESULTS AND DISCUSSION
Bulk oxygen isotope analyses (see Materials and Methods and data
S1) of pristine phosphatic microfossils (five samples of lingulifor-
mean brachiopods and two of Torellella) yielded d18Ophos values of
+13.9 to +15.2 per mil (‰) Vienna standard mean ocean water
(VSMOW). In contrast, three linguliformean brachiopod samples,
identified a priori as being affected by diagenetic alteration, yielded
lighter values of +13.3 to +14.3‰ (Fig. 2). Samples of sedimentary
phosphate from an early diagenetic phosphatic hardground, in situ
and as a rip-up clast, yielded still lighter d18Ophos values ranging from
+12.8 to +14.0‰.

In paired analyses of linguliformean brachiopods from the same
sample, identified during our preanalysis screening as preserving either
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pristine or demonstrably altered phosphate, the pristine brachiopods
consistently yielded heavier d18Ophos than their diagenetically altered
counterparts, by +0.3 to +1.0‰. The close correspondence of the
d18Ophos of diagenetically altered brachiopods (+13.3 to +14.3‰) to
those of the phosphate hardground (+12.8 to +14.0‰) suggests that
these altered SSFsmay record early diagenetic conditions or at least have
followed a similar diagenetic pathway as the hardground. In contrast,
pristine Torellella samples yielded d18Ophos values of 14.6 to 14.7‰,
comparable to the pristine brachiopods (+13.9 to +15.2‰) and heavier
values than those from the diagenetically altered brachiopods and the
hardground samples. Most Torellella specimens were identified as pris-
tine, and altered Torellella specimens were too scarce to assemble
samples for bulk analysis (see Materials and Methods).

In situ secondary ionmass spectrometry (SIMS) analysis shows that
oxygen isotopic preservation varies in the samemanner as bulk elemen-
tal composition within individual brachiopod specimens (see Materials
and Methods, fig. S3, and data S2). SIMS analysis consistently distin-
guishes between the d18O values of compact and porous laminae, with
compact laminae consistently heavier, by at least approximately 2‰,
than porous laminae in the same specimen (Fig. 2). Bulk d18Ophos values
approximate to those of the compact laminae, likely because of the pro-
portionately small contribution of the phosphate in the porous laminae
to the total volume of shelly material analyzed (18, 19). The systematic
Hearing et al., Sci. Adv. 2018;4 : eaar5690 9 May 2018
offset between the heavier values in the bulk d18Ophos and lighter values
from in situ SIMS analyses (Fig. 1) is likely due to the incorporation of
all oxygen isotope species in a SIMS analysis spot [including the high
proportion of structural carbonate in biogenic apatite (19)], compared
with only phosphate-bound oxygen (PO4

3−) measured by the trisilver
bulk phosphate method. Because phosphate-oxygen temperature equa-
tions are based on trisilver d18Ophos analyses (7, 20–22), bulk d

18Ophos

analyses are likely the most robust paleoenvironmental data from SSFs,
with SIMS analyses providing critical information on intrasample var-
iability and preservation.

Isotopic composition of Cambrian seas
Selected SSFs from the Comley Limestones, screened to identify and
exclude specimens unduly affected by diagenetic alteration, give
d18Ophos values that reflect shallowmarine conditions on early Cambrian
Avalonia. The d18Ophos data incorporate signals from the oxygen iso-
topic composition of contemporaneous sea water (d18Osw), the tem-
perature of the water in which the animal lived, and biological
fractionation (“vital effects”). The convergence of phosphate oxygen
isotope temperature equations based on both marine invertebrate and
nonmammalian marine vertebrate biominerals indicates that
phosphate oxygen vital effects are small in comparison with analytical
uncertainty (21). The impact of any vital effects in the phosphate oxygen
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Fig. 1. Preservation of linguliformean brachiopods and Torellella from the Comley Limestones. (A) SEM and EDX analyses of pristine brachiopods preserve
alternating compact and porous phosphatic laminae [(1) and (2)]; compact laminae comprise densely packed phosphatic spherules (3). Diagenetically sensitive
elements, particularly Fe and Mg, are restricted to porous laminae (4). BSE, backscattered electron image. (B) SEM and EDX analyses of altered brachiopods may
preserve laminar microstructure, but compact laminae phosphate has recrystallized to micrometer-scale prismatic crystals (3). Diagenetically sensitive elements indic-
ative of alteration are found throughout altered specimens (4). (C) Pristine Torellella specimens comprise densely packed phosphatic spherules a few tens of nano-
meters in diameter (3).
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isotope system is incorporated within the uncertainty of the empirically
derived phosphate oxygen temperature (Eq. 1) (22)

Tð�CÞ ¼ ð117:4 ± 9:5Þ � ½ð4:50 ± 0:43Þ*ðd18Ophos � d18OswÞ� ð1Þ

However, an estimate of d18Osw is still required. Local d18Osw is a
function of the d18Osw of the global ocean average value, the local influ-
ence of freshwater input, and the regional precipitation-evaporation
(P-E) balance (23). Secular variability of the global ocean d18O reservoir,
other than ice volume effects of ~1‰, is often disregarded in deep time
paleoclimate studies (5, 6) because of the potential buffering effect of
balanced hot and cold hydrothermal alteration processes (24)—a view
that has found some support from the emerging field of carbonate
clumped isotopes (25–28).However, an invariant global ocean d18O res-
ervoir is at odds with the long-term carbonate, phosphate, and silica
records, which all show comparable nonlinear secular trends in d18O
values (2, 4, 5, 29, 30). Over the Phanerozoic eon, this trend is thought
to have shifted the d18Ovalue of the global ocean reservoir fromapprox-
imately −6‰ in the early Cambrian to the heavier modern values of −1
to 0‰ (2, 4, 30). The d18Osw secular trend is further supported by simi-
larmagnitude trends derived fromnumericalmodeling, with a substan-
tial amount of this shift occurring in the early part of the Phanerozoic
eon (31, 32).

Our new data support a secular trend in the global ocean d18O res-
ervoir and extend the biomineral isotope evidence for this trend back
into the early Cambrian (Fig. 3 and data S3). We therefore suggest that
paleoenvironmental d18O studies in deep time should detrend raw data
before making paleoenvironmental interpretations of temperature or
Hearing et al., Sci. Adv. 2018;4 : eaar5690 9 May 2018
ice volume change to account for this secular variation. To avoid the
circularity of inferring both d18Osw and temperature from our data,
we use preexisting whole-rock data (4) and geochemical modeling
(31, 32) to infer that global average early Cambrian d18Osw was approx-
imately −6‰.

In addition to secular variability, we account for latitudinal P-E
effects on local d18Osw in our temperature calculations—an important
factor in paleoclimate research onmore recent intervals butwhich is not
usually considered in Paleozoic studies (26–28, 33). Latitudinal P-E
effects in modern oceans can be substantial, with surface d18Osw values
ranging from −7.7 to +2.5‰ (34), although most of the global ocean is
within ±1.5‰ of the global average (23, 34, 35). Isotope-enabled climate
models for the early Cenozoic greenhouse climate suggest that the
d18Osw distribution was similar to that of modern oceans, with perhaps
slightly increased variability driven by an enhanced hydrological cycle
(36, 37). Given the well-connected position of Avalonia to the global
ocean in the early Paleozoic (see Materials and Methods and fig. S1)
and the range of d18Osw at comparable high southern latitudes in both
the current icehouse and early Cenozoic greenhouse climate states
(34–37), we use a conservative estimate of a −0.5‰ deviation from
the Cambrian global average of −6‰ to give a d18Osw value of −6.5‰.

Cambrian sea surface temperatures
Because the Comely Limestones were deposited in a shallow marine
setting (15), we can interpret our isotope data as reflecting sea surface,
rather than deep marine, conditions. Using the phosphate oxygen tem-
perature (Eq. 1) (22) with a d18Osw value of −6.5‰, we reconstruct sea
surface temperatures (SSTs) of 20° to 25°C for the Comley Limestones
(Table 1). This is within the range of high-latitude temperatures ofmore
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Fig. 2. Early Cambrian d18Ophos data from SSFs from the Comley Limestones. (A) In bulk analyses, altered subsets are isotopically lighter than the pristine counter-
parts from the same sample. Sample labels follow Table 1; error bars of 1 SD; d18Ophos indicates trisilver phosphate analysis in which only phosphate oxygen isotopes
were measured. (B) In situ (SIMS) data from linguliformean brachiopod specimens (sample Ad) show that porous laminae are consistently isotopically lighter than
compact laminae. See data S1 and fig. S3. Box plots display the median and first and third quartiles, with the whiskers extending up to 1.5 times the interquartile range.
All isotope data are reported relative to VSMOW.
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Table 1. Bulk (trisilver phosphate) d18Ophos data from the Comley Limestones and SSTs exploring the influence of different values for d18Osw. Tem-
peratures calculated from Eq. 1 (22). T1 d

18Osw = −6.5‰, the most reasonable value; T2 d
18Osw = −6‰, assumes no latitudinal P-E effects; T3 d

18Osw = −1‰, the
most commonly used Paleozoic value; T4 d

18Osw = −8‰, incorporating the maximum likely latitudinal P-E effect of −2‰. Temperature uncertainty (2 SD T1)
calculated from d18O measurement SDs, assuming that d18Osw = −6.5‰. See data S1.
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recent greenhouse intervals in Earth’s history (Fig. 4 and data S4), such
as those of the late Mesozoic and early Cenozoic (38–41).

Repeating our calculations assuming the ice-free Cenozoic value
of −1‰ for d18Osw typically used in Paleozoic paleoclimate studies
(5, 6), rather than −6.5‰, our isotopic temperatures would shift from
~45° to 50°C (Table 1). This is unrealistic for high-latitude SSTs be-
cause they approach or exceed the lethal temperature limits for many
marine animals, including brachiopods (42). We note that our d18Ophos

values are similar to those derived fromwell-preserved conodonts from
the Tremadocian (Early Ordovician) of northern Gondwana (5) and
Laurentia (6), which provide SST estimates of 40° to 44°C, assuming
a d18Osw value of −1‰, albeit for lower latitudes. However, a recent
paleoclimate modeling study encompassing the Early Ordovician ep-
och predicts much lower sea temperatures for the paleogeographic
positions of these conodont d18O data (43). Sea temperature estimates
of 27° to 30°C, in much closer agreement with general circulation
model (GCM) estimates (43), are obtained when a detrended Early
Ordovician global ocean average d18Osw value of −4‰ (32) is used.
Detrending the conodont d18Ophos record to account for the observed
d18O secular trend (2, 4, 29) improves data-model comparison in early
Paleozoic climate studies (43), providing further confidence in our
d18Osw value.

Paleoclimate implications
The characteristically warm high-latitude temperatures of greenhouse
climate intervals, particularly noticeable in Mesozoic and Cenozoic pa-
leotemperature proxy records (38–41), are consistent with our recon-
Hearing et al., Sci. Adv. 2018;4 : eaar5690 9 May 2018
structed SSTs (Fig. 4). Early Cambrian geological data generally
support interpretations of a greenhouse climate state lacking permanent
polar ice sheets, with evaporite and calcrete deposits spanning a wide
paleolatitudinal range (10), the deposition of tropical soils (laterites)
at high paleolatitudes (44), and a maximum of continental weathering
rates over the past 900 Ma (11).

However, there may be some evidence for glaciation at high paleo-
latitudes (Avalonia) or even mid-paleolatitudes (Baltica) during the early
Cambrian (45, 46). Imprecise age constraints have hindered integration
of these possible cold-climate deposits into the international stratigraphic
framework, with some age estimates ranging from lateNeoproterozoic to
Early Ordovician. However, the likelihood is that these deposits (45, 46)
are of earliest (pretrilobitic) Cambrian or late Neoproterozoic age. Be-
cause our data from Cambrian Age 4 suggest climatic conditions that
preclude even polar land ice at low altitude, it seems likely that any glacial
activity was restricted to the earliest Cambrian or to short duration
icehouse intervals.

To further investigate the viability of our temperature estimates, we
ran newGCM simulations of the early Cambrian climate (Fig. 5 and fig.
S4) using the Fast Ocean Atmosphere Model (FOAM) (47)—a coupled
ocean-atmosphere GCM that has recently been applied to interrogate
other questions about early Paleozoic climates (43, 48). The GCM simu-
lations found good agreement with our new data for CO2-equivalent
forcing of 32 times preindustrial atmospheric levels (PALs; 280 parts
per million). This greenhouse gas forcing is in line with Cambrian pCO2

(partial pressure of CO2) estimates from GEOCARB suite of models
(49). Both the data- and GCM-derived temperatures are comparable
 on M
arch 17, 2021
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to late Mesozoic and early Cenozoic greenhouse conditions (Fig. 4)

(38–41).
Overall, our new data provide the first quantitative constraints on

early Cambrian climate, corroborating qualitative geological data and
geochemical arguments that also support interpretations of this as a
greenhouse world. Our new data fill an extensive time gap in the paleo-
temperature record of the beginning of the Phanerozoic eon and pro-
vide environmental context to a time when the animal-rich marine
ecosystems of the Phanerozoic were first evolving. Using quantitative
data to inform environmental and climate models will enable more rig-
orous interrogation of first-order hypotheses surrounding the ecological
revolutions of the Cambrian Period, and these data can be recovered
from globally widespread phosphatic Cambrian microfossils.
rch 17, 2021
MATERIALS AND METHODS
Materials
The Comley Limestones
TheComley Limestoneswere deposited in a shallow sea (15) at ~65°S to
70°S on the peri-Gondwanan microcontinent Avalonia (16) between
514.45 ± 0.36 and 509.10 ± 0.22 Ma ago (fig. S1) (17). This fossiliferous
and highly condensed limestone unit is less than 2 m thick, with five
lithostratigraphic units (Ac2 to Ac5 and Ad) recognized on the basis
of their petrographic and paleontological characteristics and separated
by erosional disconformities that represent depositional hiatuses (15).
Glauconite clasts and laminated iron-manganese nodules are com-
mon throughout the succession. The horizons are all more-or-less-
sandy limestones, with detrital mineral abundance and faunal
composition varying throughout the succession. The abundance of
glauconite, laminated iron-manganese nodules, evidence for erosion
and condensation, and the typically stenohaline trilobitic fauna in-
dicates that there was no major freshwater (riverine) influence.
There was deposition characteristic of normal marine conditions
in the Welsh Basin throughout much of the Cambrian, Ordovician,
and Silurian (50), and its peri-Gondwanan position close to the
passive margin of the Iapetus Ocean during the Cambrian Period
Hearing et al., Sci. Adv. 2018;4 : eaar5690 9 May 2018
(16) suggests that it was well connected to the global ocean. The Comley
Limestones are considered to have been deposited in an energetic shal-
low marine environment (15) that was unlikely to have been subjected
to a seasonal thermocline.
Microfossil processing
Blocks of the Comley Limestones were macerated in buffered (10 to
15%) acetic acid using a standard extraction protocol, modified after
Jeppsson et al. (51), that is not known to affect d18O values (9). Heavy
liquid separation, which is commonly used to concentrate microfossils
within an acid residue but is known to affect d18Ophos values (9), was not
used. Acetic acid residues were collected between 1000- and 125-mm
sieves and thoroughly rinsed with deionized water before being gently
dried in an oven (T < 50°C). The residues were subsequently examined
using a binocular microscope, and fossil specimens were picked out
with a brush and deionized water. SSFs were assembled into 30-mg
taxon-specific bulk samples, with each sample comprising several tens
to a few hundred individual specimens.

Specimens were assembled into “pristine” and “altered” samples
based on their appearance under optical microscopy. Pristine brachio-
pod specimens had a translucent light-brown appearance under re-
flected light, whereas altered specimens were opaque and appeared
very dark brown to black (fig. S2). Specimens intermediate between
these end-member states were excluded from further analysis. The vast
majority ofTorellella specimenswere deemedpristine: light blue-gray in
color, thick-walled, and with visible growth structures both within the
tube walls and on the exterior surface. Although altered Torellella speci-
mens exist (bleached white or black in color and with tube walls typi-
cally thin with no internal or external differentiation), no lithological
sample yielded sufficient of these for bulk isotope analysis. The actual
preservation state of samples was confirmed following the protocol out-
lined below.
Microfossil preservation
Because it was not possible to assess the preservation of every fossil in a
bulk isotope sample, individual representative specimens were taken
from bulk samples and examined to determine the typical preserva-
tion of each sample. Fractured surfaces of individual specimens were
Sea surface temperature (ºC)
Fig. 5. Early Cambrian mean annual SSTs, modeled by the FOAM GCM. The simulation was run under present-day orbital configurations with a CO2-equivalent
greenhouse gas forcing of 32 PAL (see Materials and Methods and fig. S4). Black spot marks the position of our d18Ophos data on Avalonia.
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examined using high-magnification SEM to investigate the extent of
recrystallization or overgrowth by diagenetic phosphate. Polished
cross sections of individual specimens embedded in epoxy resin were
examined using EDX spectroscopy to investigate the extent of chem-
ical alteration and particularly the distribution of any such alteration
within individual specimens.

The shells of modern linguliformean brachiopods comprised
alternating dense layers of biophosphate (compact laminae) and organic-
rich layers with much less biophosphate (porous laminae of various
morphologies). The compact laminae, which constituted most of the
biomineralized material, were composed of densely packed calcium
phosphate spherulesmeasuring from tens to a fewhundred nanometers
in diameter (18). We identified these submicrometer-scale phosphatic
spherules in the compact laminae of specimens taken frompristine bulk
samples (Fig. 1 and fig. S1). We also found these submicrometer-scale
phosphatic spherules in specimens taken from pristine samples of the
tubular SSF Torellella (Fig. 1). Specimens from samples identified as di-
agenetically altered showed recrystallization of these spherules, forming
micrometer-scale phosphatic prisms (Fig. 1). These very small crystal-
lite sizes, where microstructures are otherwise well preserved, may sim-
ply reflect solid-state recrystallization with no or minimal isotopic
exchange because phosphate oxygen isotopes are known to be robust
to low-temperature non–microbially mediated recrystallization (52).
Secondary phosphatization was restricted to apatite overgrowths pro-
truding into the porous laminae of specimens taken from samples of
altered brachiopod samples. Overgrowths were also observed in
some Torellella specimens, although where present, this was apparent
under optical microscopy as bulges formed on the surfaces of these
specimens wherever overgrowths had formed. Torellella specimens
with these bulges were excluded from isotope analyses. In the most
severely altered brachiopod specimens, all internal microstructure
was lost, with the specimens being preserved as crude (blocky) out-
lines only.

Individual specimens from pristine and altered samples were em-
bedded in epoxy resin and cured under pressure (approximately
2 bar) before being ground and polished with silicon carbide paper, di-
amond paste, and g-alumina, before being thoroughly rinsed with eth-
anol and deionized water. EDX analyses of these specimens enabled us
to map element distributions across different biological domains
(compact and porous laminae). In brachiopod specimens taken from
pristine samples, we found that elements indicative of alteration (most
commonly, Fe, Mg, and Si) were restricted to porous laminae and were
excluded from compact laminae (Fig. 1). In EDX analyses of specimens
taken from altered samples, we found that these elements pervade the
brachiopod compact laminae, where we had already observed prismatic
phosphate recrystallization (Fig. 1). Having confirmed these preserva-
tion states with detailed SEM-EDX investigations, we determined that it
was possible to separate pristine and altered specimens into bulk isotope
samples using optical microscopy (fig. S2).
Phosphatic hardground
Sedimentary phosphate samples were also taken for bulk isotope anal-
ysis to provide a d18O diagenetic gradient. These were acquired by
microdrilling approximately 30 mg of powder from an irregular phos-
phatic hardground (HG-A) horizon in the lower part of the Comley
Limestones and from a phosphatic pebble (HG-B) a few centimeters
above the hardground. The in situ hardground is up to 3 cm deep, with
an angular upper surface, and separates two distinct lithologies: an
underlying trilobite-rich sandy limestone and an overlying glauconite-
rich sandy limestone with few fossils. The overlying glauconite-rich
Hearing et al., Sci. Adv. 2018;4 : eaar5690 9 May 2018
unit also contains subrounded to angular phosphatic pebble-sized
clasts. In places, the uppermost part of the hardground includes laminae
of glauconite and quartz clasts.

Petrographic observations, including the lithological differences be-
tween the underlying and overlying units, the irregular upper surface,
the preservation of calcareous fossils between the phosphate ground-
mass, and the fine glauconite and quartz laminae near the top of the
horizon, suggested an early diagenetic origin of the phosphate, with oc-
casional interruption of phosphate precipitation at the sediment-water
interface and, ultimately, exposure of the hardground on the sea bed.
Phosphate clasts were incorporated into the horizon above the hard-
ground and were interpreted as deriving from the hardground during
its exposure on the sea bed after its formation.

Methods
Bulk isotope analyses
All d18O values were reported with respect to VSMOW. Bulk isotope
data were obtained from 30-mg fossil samples, with each sample com-
prising several tens of individual specimens, treated to solubilize PO4

anions and precipitated as silver phosphate [adapted after O’Neil et al.
(53)] at the Natural Environment Research Council (NERC) Isotope
Geoscience Facilities (NIGF). Samples of microfossils were crushed
using a glass rod, cleaned in concentratedhydrogenperoxide for 24hours
to remove organicmaterial, and subsequently evaporated to dryness. The
samples were then dissolved in 2MHNO3 and transferred to clean poly-
propylene test tubes. Each sample was then treated with 2 M KOH for
neutralization and 2MHF to remove calcium from the solution by pre-
cipitationof calcium fluoride. The sampleswere then centrifuged, and the
supernatant was added to beakers containing ammoniacal silver nitrate
solution and heated gently to precipitate silver phosphate. The silver
phosphate was filtered, rinsed, dried, and weighed into silver capsules
for analysis. Oxygen isotope measurements on each sample were ana-
lyzed in triplicate by continuous flow isotope ratio mass spectrometry
(54). Analysis was via a high-temperature conversion elemental ana-
lyzer coupled to a Delta Plus XL isotope ratio mass spectrometer via a
ConFlo III interface (Thermo Finnigan). The referencematerial B2207
(silver phosphate, Elemental Microanalysis) has an accepted value of
21.70‰, and the reproducibility of B2207 during this set of analyses
was better than ±0.15 (1s). All d18O analyses were performed in tripli-
cate, and the average SD of the triplicates was ±0.15‰.
Ion microprobe analyses
In situ SIMS analyses were conducted at the Edinburgh IonMicroprobe
Facility (EIMF). For SIMS analysis, specimens were embedded under
pressure (2 bar) in epoxy resin within 5 mm of the center of the block
and around a central Durango apatite standard. Sample blocks were
prepared using diamond grinding compounds, followed by diamond
and alumina polishing compounds. Sample blocks were treated for
24 hours with H2O2 to remove organic matter from the embedded fos-
sils. Surface reimpregnation, with minimal regrinding and polishing,
was used to ensure a smooth and flat surface before gold coating for
SIMS analysis.

SIMS analysesweremade using theCAMECA IMS-1270 ionmicro-
probe. A primary beam of Cs+ ions at ~5 nA was focused to a 30-mm-
diameter spot on the sample block surface. Secondary ions were
extracted at −10 kV, with 16O [~2 × 109 counts/s (cps)] and 18O (~4 ×
106 cps) monitored simultaneously on dual Faraday cups (L’2 and H’2).
Each analysis began with 50-s presputtering time, followed by
automatic secondary beam and entrance slit centring, before data col-
lection in two 10-cycle blocks. Each SIMS run began with 10 Durango
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analyses, followed by alternating analysis sets of five unknowns
(samples) and five standards (Durango apatites), dropping to three
standards when beam stability was good. Linear regressions were ap-
plied to each analysis run to correct for instrument drift. Mean external
precision was derived from the SD of Durango analyses following linear
regression corrections for long-term (session duration) drift. This value
was reported for each unknown (sample) analysis and ranged from
±0.11 to 0.41‰. The Durango apatite standards were fragments of a
larger crystal, supplied by EIMF, whose isotopic composition (d18Ophos,
+8.7‰) was independently verified by trisilver phosphate analysis at
NIGF before this project began.
Climate modeling
We used the three-dimensionally coupled ocean-atmosphere FOAM
version 1.5 (47) that was widely applied to deep time paleoclimate stu-
dies (43, 48, 55, 56). The atmospheric module is a parallelized version of
the National Center for Atmospheric Research Community Climate
Model 2 (CCM2), upgraded to include radiative and hydrologic physics
from CCM3 version 3.2. We ran the atmospheric module with R15
spectral resolution (4.5° × 7.5°) and 18 vertical levels. The oceanmodule
was the higher-resolutionOceanModel version 3, a 24-level z-coordinate
ocean GCM giving 1.4° × 2.8° resolution on a regular longitude-latitude
grid. The coupled model had no flux corrections, and its short turn-
around time allowed millennial-scale integration.

We used the Cambrian continental configuration from BugPlates
for 510 Ma ago (57). In the absence of land plants, the land surface was
defined as a rocky desert (albedo, 0.24; modified by snow, if present).
The solar luminosity was decreased by 4.3 % compared to its present
value (1368Wm−2) (58), and orbital parameters were maintained con-
stant to the present-day configuration. The pCO2 was fixed at 32 PALs
(59), and concentrations of other greenhouse gases were kept to the
present-day level so that the imposed radiative forcing must be
considered a CO2 equivalent that may include some contribution of
other greenhouse gases such as methane. The simulation was initialized
using a warm ice-free ocean and a uniform salinity of 35‰. We
integrated the model for 2000 years to reach deep-ocean equilibrium.
During the last 100 years of the simulation, there was no apparent drift
in the upper ocean and <0.01°C change in deep ocean (−3700 m) tem-
perature. The last 50 years of the model run were used to build the cli-
matology files used for analysis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaar5690/DC1
fig. S1. Paleogeographic and stratigraphic setting of the Comley Limestones (Avalonia,
Cambrian Series 2).
fig. S2. Examples of pristine and altered brachiopod and Torellella specimens.
fig. S3. Box plots of ion microprobe (SIMS) data collected from pristine linguliformean
brachiopods by tissue sampled.
fig. S4. Global SST contour plots produced by early Cambrian FOAM GCM simulations for CO2-
equivalent forcing of 32 PALs (see Materials and Methods).
data S1. Triplicate trisilver phosphate isotope measurements.
data S2. Processed ion microprobe (SIMS) data.
data S3. Paleozoic phosphate d18O data used to produce Fig. 3.
data S4. Paleotemperature data used to produce Fig. 4.
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